Impetustheorie

Impetustheorie

Die Impetustheorie (von lateinisch impetus = das Vorwärtsdrängen, der Schwung) ist eine überholte Theorie zur „dynamischen“ Erklärung der Bewegung von Körpern, die aus einer christlichen Kritik der materialistischen aristotelischen Bewegungslehre hervorging. Der Impetus ist dabei eine unkörperliche (immaterielle) Bewegungsursache oder eher spirituell verstandene „Kraft“, die auf einen zu bewegenden Körper übergeht, um dessen Bewegung hervorzubringen.

Im Mittelalter bildete die Impetustheorie eine wichtige Grundlage der Ballistik. In der auf Isaac Newtons Werk aufbauenden Klassischen Mechanik ist der Begriff des Impetus eliminiert worden und seine Bedeutung zu Teilen in die ursachenlose Trägheitsbewegung, den Impuls und die kinetische Energie eingeflossen.

Untersuchungen an Studienanfängern bezüglich ihres Verständnisses des Verhaltens bewegter Objekte ergaben, dass die intuitiven Erklärungsansätze eines großen Teils der Probanden auch heute noch große Ähnlichkeit mit der Impetustheorie aufweisen.[1][2]

Geschichte

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.

Die Impetustheorie wurde bereits im 6. Jahrhundert von dem spätantiken griechischen Gelehrten Johannes Philoponos diskutiert. Ein Vorläufer der Theorie wurde auch von Franz von Marchia im 14. Jahrhundert vertreten. Der französische Philosoph Johannes Buridan entwickelte die Impetustheorie dann bald darauf entscheidend weiter. Auch Galileo Galilei verwendete in seinen frühen Schriften und noch in den „Discorsi“ eine Beschreibung von fallenden Körpern, die der Impetustheorie nahekam, und Leonardo da Vinci griff zur Beschreibung von Kreisbewegungen auf das Konzept des Kreisimpetus zurück. Newton benutzt in den Principia das Wort 'Impetus' als eine Erscheinungsform seiner die Bewegungs- bzw. die Ruhe erhaltenden 'Kraft der Trägheit'.[3]

Klassisches Beispiel: Ballistische Probleme

Geschichte

Flugbahn einer Kanonenkugel gemäß erweiterter Impetustheorie

Die Impetustheorie ging wie die aristotelische Physik davon aus, dass eine Bewegung nur möglich sei, solange eine entsprechende Bewegungsursache (in heutiger Sichtweise also eine Kraft) wirke. Um einen Gegenstand in Bewegung zu halten, sollte dieser ständig durch einen anderen Körper bewegt werden. Diese Annahme machte es jedoch unmöglich, die Bewegung von Geschossen zu erklären, da diese nach Verlassen des Gewehrlaufes keinen Kontakt zu einem anderen festen Körper haben. Die Impetustheorie löste dieses Problem durch die Annahme einer immateriellen ursächlichen Kraft, die dem Geschoss beim Abschuss aufgeprägt wird – der Impetus. Um die bei realen Gegenständen beobachtete stetige Verlangsamung der Bewegung zu erklären, nahm man weiterhin an, dass der Impetus hierbei stetig abnimmt. War der Impetus aufgebraucht, sollte der Körper senkrecht zu Boden fallen.

Flugbahn eines Geschosses nach Avicenna

Laut der Beschreibung des persischen Philosophen Avicenna im 11. Jahrhundert bewegt sich ein Geschoss nach Verlassen des Geschützes so lange geradlinig in Abschussrichtung, bis sein anfänglicher Impetus vollständig verbraucht ist (A→B). Danach soll der Körper für einen kurzen Augenblick zum Stillstand kommen (Punkt B), um anschließend durch seine natürliche Schwere einen Abwärtsimpetus zu erfahren, wodurch dieser senkrecht nach unten fällt (B→C).

Flugbahn eines Geschosses nach Albert von Rickmersdorf

Der Scholastiker Albert von Rickmersdorf schlug im 14. Jahrhundert eine etwas genauere Beschreibung der Flugbahn vor. Er teilte die Bewegung in drei Phasen ein. Anfangs sei der Impetus so hoch, dass er die natürliche Schwere des Körpers überwiege. Der Körper bewege sich auf einer Geraden (A→B). Mit dem Verschwinden des Impetus steige der Einfluss des Gewichtes und das Geschoss beschreibe einen Bogen (B→C). Ist der Impetus verbraucht, falle das Projektil senkrecht zu Boden (C→D).

Tatsächliche Flugbahn

Ohne Berücksichtigung der Luftkräfte auf ein frei fliegendes Objekt (Oberflächenreibung, Formwiderstand, aerodynamischer Auf- oder Abtrieb) ist die Flugbahn eine Wurfparabel. Bei langsamen Objekten bleibt die Parabelform auch bei Berücksichtigung der Luftkräfte weitgehend erhalten (Beispiel: Wurf eines Tennisballs von einer Hand in die andere). Alle einzelnen Luftkräfte wachsen jeweils exakt oder annähernd quadratisch mit der Fluggeschwindigkeit, so dass auch die Gesamtkraft (resultierend auch der Gesamtwiderstand) quadratisch mit der Geschwindigkeit zunimmt. Bei hohen Geschwindigkeiten geht also mehr kinetische Energie durch die Überwindung des Luftwiderstandes verloren, und es wird weniger Energie in die Bewegung gegen die Schwerkraft umgewandelt (potenzielle Energie).

Dieser Umstand hat Auswirkungen auf die Gestaltung der optimalen Flugbahn beziehungsweise des Abschusswinkels eines Geschosses. Schnelle reale Objekte, wie beispielsweise Kanonenkugeln, ein abgeschlagener Golfball, ein geworfener Speer oder Diskus oder die Tropfen eines Druckwasserstrahls, bewegen sich auf Flugbahnen, wie sie ähnlich nach der Impetustheorie zu erwarten sind. So wird die maximale Weite nicht bei einem Abschusswinkel von 45° erreicht, wie er für Geschosse ohne Luftkräfte errechnet werden kann, sondern bei kleineren Winkeln, und zwar umso kleineren Winkeln, je schneller die Abschussgeschwindigkeit und je kleiner die Masse des Objekts im Verhältnis zur Querschnittsfläche ist. Insofern erklärt die Impetustheorie ausreichend genau, aber sachlich falsch, was mit bloßem Auge oder einfachen Flugbahnaufzeichnungen (z. B. Feuchtigkeitslinie an einer angespritzen, senkrechten Wand) beobachtet werden kann.

Literatur

  • Michael McCloskey: Impetustheorie und Intuition in der Physik. In: Spektrum der Wissenschaft: Newtons Universum, Heidelberg 1990, ISBN 3-89330-750-8, S. 18.
  • Ed Dellian: Does Quantum Mechanics Imply the Concept of Impetus?, Physics Essays 3 Nr. 4 (1990) S. 365.
  • Klaus Hentschel: Zur Begriffs- und Problemgeschichte von 'Impetus', in Hamid Reza Yousefi und Christiane Dick (Hrsg.) Das Wagnis des Neuen. Kontexte und Restriktionen der Wissenschaft, Nordhausen: Bautz 2009, S. 479–499.
  • Michael Wolff: Geschichte der Impetustheorie. Untersuchungen zum Ursprung der klassischen Mechanik. Frankfurt: Suhrkamp, 1978.

Einzelnachweise

  1. A. Caramazza, M. McCloskey, B. Green: Naive beliefs in "sophisticated" subjects: Misconceptions about trajectories of objects. In: Cognition 9 (2), 1981, S. 117–123.
  2. Edgar Fieberg: Das intuitive Wissen über Bewegungsgesetze: Entwicklungspsychologische Untersuchungen zum intuitiven Wissen im Handeln, Wahrnehmen und Urteilen. Waxmann Verlag, 1998, ISBN 978-3-89325-646-4.
  3. Isaac Newton, Philosophiae Naturalis Principia Mathematica (I.B. Cohen, ed.), Berkeley: University of California Press 1999

Diese Artikel könnten dir auch gefallen



Die letzten News


13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.
18.12.2020
Galaxienhaufen, gefangen im kosmischen Netz
Mehr als die Hälfte der Materie in unserem Universum entzog sich bislang unserem Blick.
18.12.2020
Zwei planetenähnliche Objekte, die wie Sterne geboren wurden
Ein internationales Forschungsteam unter der Leitung der Universität Bern hat ein exotisches System entdeckt, das aus zwei jungen planetenähnlichen Objekten besteht, die sich in sehr grosser Entfernung umkreisen.
16.12.2020
Neuen Quantenstrukturen auf der Spur
Der technologische Fortschritt unserer modernen Informationsgesellschaft basiert auf neuartigen Quantenmaterialien.
16.12.2020
Das Protonenrätsel geht in die nächste Runde
Physiker am Max-Planck-Institut für Quantenoptik haben die Quantenmechanik mit Hilfe der Wasserstoffspektroskopie einem neuen bis dato unerreichten Test unterzogen und sind der Lösung des bekannten Rätsels um den Protonenladungsradius damit ein gutes Stück nähergekommen.
03.12.2020
Laborexperimente könnten Rätsel um Mars-Mond Phobos lösen
Was lässt die Oberfläche des Mars-Monds Phobos verwittern? Ergebnisse der TU Wien liefern wichtige Erkenntnisse, bald soll eine Weltraummission Gesteinsproben nehmen.
26.11.2020
Gesund bis zum Mars
Tübinger Wissenschaftlerin untersucht mit internationalem Weltraumforschungsteam die Einflüsse der Raumfahrt auf den menschlichen Körper.
26.11.2020
Stammbaum der Milchstraße
Galaxien wie die Milchstraße sind durch das Verschmelzen von kleineren Vorgängergalaxien entstanden.
26.11.2020
Nanodiamanten vollständig integriert kontrollieren
Physikerinnen und Physikern ist es gelungen, Nanodiamanten vollständig in nanophotonischen Schaltkreisen zu integrieren und gleichzeitig mehrere dieser Nanodiamanten optisch zu adressieren. Die Studie schafft Grundlagen für zukünftige Anwendungen im Bereich der Quantensensorik oder Quanteninformationsverarbeitung.
26.11.2020
Der Sonne ein Stück näher
Der Borexino-Kollaboration, an der auch Wissenschaftler der TU Dresden beteiligt sind, ist es nach über 80 Jahren gelungen, den Bethe-Weizsäcker-Zyklus experimentell zu bestätigen.
22.11.2020
Entfernungen von Sternen
1838 gewann Friedrich Wilhelm Bessel das Wettrennen um die Messung der ersten Entfernung zu einem anderen Stern mit Hilfe der trigonometrischen Parallaxe - und legte damit die erste Entfernungsskala des Universums fest.