Pascal (Einheit)

Pascal (Einheit)

(Weitergeleitet von Hektopascal)
Physikalische Einheit
Einheitenname Pascal

Einheitenzeichen $ \mathrm{Pa} $
Physikalische Größe(n) Druck
Formelzeichen $ p $
Dimension $ \mathsf{M\;L^{-1}\;T^{-2} } $
System Internationales Einheitensystem
In SI-Einheiten $ \mathrm{1 \, Pa = 1 \, \frac{N}{m^2} = 1 \; \frac{kg}{m\cdot s^2} } $
In CGS-Einheiten $ \mathrm{1 \, Pa = 10 \; \frac{g}{cm \cdot s^2} } $
Benannt nach Blaise Pascal
Abgeleitet von Newton, Quadratmeter

Das Pascal ist eine abgeleitete SI-Einheit des Drucks sowie der mechanischen Spannung. Sie ist nach Blaise Pascal benannt und folgendermaßen definiert:

1 Pa = 1 kg·m−1·s−2 = 1 N·m−2

Ein Pascal ist also der Druck, den eine Kraft von einem Newton auf eine Fläche von einem Quadratmeter ausübt.

Der mittlere Luftdruck der Atmosphäre auf Meereshöhe (Standard- bzw. Normdruck) beträgt 101325 Pascal = 1013,25 hPa = 101,325 kPa oder 1,01325 bar.

Umrechnung: 1×105 Pa = 1 bar oder 1 MPa = 10 bar

Geschichte

Bei der Einführung des SI-Systems war die Maßeinheit mit dem Namen Pascal jedoch nicht enthalten. Stattdessen war der Name für die SI-Einheit einfach „Newton pro Quadratmeter“. Neben dem langen Namen hatte die Definition den Nachteil, dass der Wert der Einheit im Vergleich zu Pound-force per square inch (psi) im Alltag als zu klein empfunden wurde.[1] In der Meteorologie war die Einheit Millibar üblich, und auch in der europäischen Industrie wurde zunehmend die Einheit Bar gebraucht. Um dezimale Vielfache wie 105 als Umrechnungsfaktoren im SI-System zu vermeiden, wurde bei der 14. Generalkonferenz für Maß und Gewicht im Oktober 1971 der abgeleiteten Einheit N/m2 der Name Pascal gegeben.[1] Blaise Pascal (1623–1662) war ein französischer Philosoph und Wissenschaftler, der sich unter anderem mit dem Verhalten von Fluiden beschäftigt und Grundlagen wie das Konzept von Druck und Vakuum entwickelt hat.

Die Einheit wurde bereits 1969 in Deutschland als gesetzliche Einheit festgelegt.[2] In der Meteorologie wurde Pascal dann am 1. Januar 1984 eingeführt.[2]

Anwendungen und typische Größen

Im Folgenden werden einige Größenbeispiele für verschiedene Anwendungen angeführt. Für den Größenbereich werden SI-Präfixe angegeben.

Mikropascal

Als Bezugswert für den Schalldruckpegel Lp = 0 dB (Dezibel) ist 20 µPa Schalldruck festgelegt und gilt als Hörschwelle. Die Lautheit von 1 sone wird bei 1000-Hz-Sinuston und +40 dB, also 2000 µPa definiert. 1 Pa Schalldruck entspricht +94 dB und ist damit so laut, dass bei Dauerbelastung Hörschäden auftreten können. Weil der Druck im Gas (Fluid) nicht negativ werden kann, ist symmetrisch auf- und abschwingender Schalldruck mit dem Umgebungs(luft)druck begrenzt, dem Standardatmosphärendruck von 1013,25 hPa entspricht dabei 194,09 dB. Ein einzelner Knallstoß kann jedoch stärker sein.

Dekapascal

In der Lüftungstechnik wird häufig die Einheit Dekapascal (1 daPa = 10 Pa) verwendet, wobei ein Dekapascal 0,1 mbar entspricht.

Hektopascal

In der Meteorologie wird der Luftdruck der Atmosphäre (auf Meereshöhe im Mittel 1 013,25 hPa) meist in Hektopascal (1 hPa = 100 Pa) angegeben, weil so zum einen die SI-konforme Einheit Pascal verwendet werden kann und man zum anderen einen Zahlwert hat, der dem früher üblichen Millibar (mbar) genau entspricht.

In der Forschung wird, insbesondere bei der Vakuumtechnik, vielfach das Millibar als Einheit verwendet.

Kilopascal

Die Einheit Kilopascal (1 kPa = 1000 Pa = 0,1 N/cm2) wird in der Kraftfahrzeugtechnik beispielsweise für die SI-konforme Angabe des Reifenfülldruckes benutzt. Ein Druck von 100 kPa entspricht dabei 1 bar. Auch bei Abwasserleitungen wird der Prüfdruck in Kilopascal angegeben.

Megapascal

Die Einheit Megapascal (1 MPa = 1 Million Pa = 1 N/mm2) wird in der Technik und in höheren Zahlen auch zur Beschreibung von Explosionen verwendet. Der Kaltfülldruck einer Halogenlampe mit den Edelgasen Neon und Krypton bei 22 °C kann z. B. 1,2 MPa (entspricht 12 bar) betragen.[3] Eine Hydraulikleitung kann für 400 bar = 40 MPa Betriebsdruck ausgelegt sein.

Megapascal werden auch z. B. zur Beschreibung des kritischen Punktes in der Thermodynamik verwendet.

Streckgrenze, Dehngrenze und Streckspannung im Maschinenbau werden ebenfalls üblicherweise in Megapascal angegeben. Auch in der Bautechnik wird die Festigkeit von Betonen in Megapascal angegeben.

Die spezifische Energie eines Sprengstoffes gibt den Druck in Megapascal an, den ein Kilogramm dieses Explosivstoffes in einem abgeschlossenen Volumen von einem Liter bei der Explosion erzeugen würde.

Gigapascal

Die Einheit Gigapascal (1 GPa = 1 Milliarde Pa) beschreibt die Größenordnung von Drücken, die z. B. Graphit in Diamant verwandeln:[4] Graphit, zusammengepresst in einer hydraulischen Presse bei bis zu 6 GPa und Temperaturen über 1500 °C, wandelt sich in Diamant um.

Analog zur Umwandlung von Graphit in Diamant wandelt sich Bornitrid bei hoher Temperatur (1400–1800 °C) und Druck über 6 GPa von einer hexagonalen in die kubische Modifikation um. Unter Normalbedingungen weist Bornitrid eine Festigkeit von etwa 48 GPa auf (Diamant zwischen 70 und 100 GPa).

In 410 km Tiefe beträgt der Druck 14 GPa; siehe 410-km-Diskontinuität. In Erdtiefen von etwa 700 km wandeln sich bei Temperaturen von einigen hundert Grad Celsius bzw. bei Drücken um 25 GPa zahlreiche gesteinsbildende Minerale isochemisch in unter diesen Bedingungen stabilere sowie kristallographisch dichter gepackte Modifikationen um.

Mit einem Druck von 268 GPa konnten Forscher Quarz in eine Kristallstruktur umwandeln, die nirgends natürlich vorkommt.[5]

Elastizitätsmodul und Schubmodul, Materialkonstanten, die Auskunft über die lineare elastische Verformung eines Bauteils infolge einer Normal- bzw. Scherkraft geben, werden ebenfalls in Gigapascal angegeben. Aluminium hat z. B. einen Schubmodul von 25,5 GPa, Stahl von 79,3 GPa. Der Schermodul von Gesteinen beträgt meistens 30 GPa, siehe Seismisches Moment.

Umrechnung von Druckeinheiten

Neben dem Pascal gibt es noch weitere Einheiten für den Druck. Eine Tabelle findet sich im Artikel Druck.

Einzelnachweise

  1. 1,0 1,1 Norman A. Anderson: Instrumentation for Process Measurement and Control. 3. Auflage. CRC Press, 1997, ISBN 0-8493-9871-1, S. 37 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. 2,0 2,1 Pascal. In: Wetterlexikon. Die Welt, abgerufen am 12. August 2016.
  3. Beispiel diese Patentschrift: DE2006000223 INCANDESCENT HALOGEN LAMP. Abgerufen am 20. Juni 2012.
  4. Jan Oliver Löfken: Fast so hart wie Diamant, aber amorph wie Glas. Wiley-VCH Verlag GmbH & Co. KGaA, 26. Oktober 2011, abgerufen am 20. Juni 2012.
  5. Überirdisches Silizium. wissenschaft.de, abgerufen am 20. Juni 2012.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.