Heisenberg-Modell (Quantenmechanik)

Heisenberg-Modell (Quantenmechanik)

Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

Das Heisenberg-Modell in der quantenmechanischen Formulierung ist ein in der theoretischen Physik viel benutztes mathematisches Modell zur Beschreibung von Ferromagnetismus (sowie Antiferromagnetismus und Ferrimagnetismus) in Festkörpern.

1928 haben Werner Heisenberg[1] und Paul Dirac[2] erkannt, dass Ferromagnetismus in einem Festkörper durch einen effektiven Hamiltonoperator beschrieben werden kann, der die quantenmechanischen Ortsfunktionen nicht enthält, da er lediglich aus wechselwirkenden lokalisierten Elektronenspins auf einem Gitter (dem Kristallgitter) aufgebaut ist. Die Wechselwirkung ist dabei (zunächst) reduziert auf benachbarte Spins (Nächste-Nachbar-Wechselwirkung):

$ H_{\text{Heis}}=-J\sum_{\langle i,j \rangle}\vec{S_i}\cdot\vec{S_j} \qquad \text{mit } i,j \, \text{n}\ddot{\rm a}\text{chste Nachbarn} $

Dabei sind die $ \vec S_i $ und $ \vec S_j $ die bekannten quantenmechanischen Vektoroperatoren zu gegebener Spinquantenzahl s ($ s \in \{1/2,\, 1,\, 3/2,\, 2,\, \ldots\} $). Die Indizes i und j beziehen sich auf die Gitterpositionen, wobei das Gitter eine Kette (eindimensionales Heisenberg-Modell), ein zweidimensionales Gitter (z. B. ein hexagonales Gitter) oder eine dreidimensionale Anordnung (z. B. ein kubisches Gitter) sein kann. Der Spin hingegen ist beim Heisenberg-Modell immer dreidimensional, weshalb es auch als Spezialfall des n-Vektor-Modells mit $ n=3 $ bezeichnet wird.

Ziel der Betrachtung ist es, experimentell beobachtete Effekte wie die spontane Magnetisierung und die kritischen Exponenten an den Phasenübergängen zu modellieren.

Die Austauschwechselwirkung zwischen den lokalisierten Spins wird durch die Coulomb-Abstoßung und das Pauli-Prinzip verursacht und bei Beschränkung auf Nächste-Nachbar-Wechselwirkung und Isotropie (siehe unten) mit einer einzigen Kopplungskonstante $ J $, der sogenannten Austauschenergie, ausgedrückt. Das Modell ist zur qualitativen Beschreibung von Ferromagnetismus in Isolatoren geeignet, versagt aber bei den meisten Metallen (hier ist das Hubbard-Modell besser geeignet). Das Modell kann durch eine Verallgemeinerung der Heitler-London-Näherung für die Bildung zweiatomiger Moleküle begründet werden (siehe das einschlägige Unterkapitel in Magnetismus). Für eindimensionale Systeme kann es exakt gelöst werden; in zwei und drei Dimensionen gibt es dagegen nur genäherte Lösungen, z. B. mit Quanten-Monte-Carlo-Methoden. Im Gegensatz zum klassischen Heisenberg-Modell werden die Spins durch Operatoren ausgedrückt und gehorchen den Regeln der Quantenmechanik.

Erläuterungen

Der Ferromagnetismus von Isolatoren wird bewirkt von lokalisierten magnetischen Momenten, die einer unvollständig gefüllten Elektronenschale (3d, 4d, 4f oder 5f) zuzuschreiben sind. Diesen lokalisierten magnetischen Momenten $ \vec{m}_i $ ist ein Drehimpuls $ \vec{J}_i $ zugeordnet, der mit dem jeweiligen Spin $ \vec{S}_i $ ausgedrückt werden kann:

$ \vec{m_i}=\mu_{\mathrm B} g_J \vec{J_i}=\mu_{\mathrm B} g_J \frac{\vec{S_i}} {g_J-1} $

Der Spinvektor $ \vec{S_i} $ ist gegeben über die Spin-1/2-Operatoren, $ g_J $ ist der Landé-Faktor und $ \mu_{\mathrm B} $ ist das Bohrsches Magneton. Die Austauschwechselwirkung zwischen den magnetischen Momenten kann so durch die zugehörigen Spins ausgedrückt werden. Die Austauschwechselwirkung simuliert also die Coulombabstoßung und das Pauliprinzip. Die Kopplungskonstanten $ J $ zwischen den lokalisierten Spins werden daher auch Austauschintegrale genannt. Man nimmt an, dass die Austauschintegrale nur für benachbarte Spins merklich von null verschieden sind. Insgesamt erhält man so also einen effektiven Hamiltonoperator, der darauf ausgelegt ist, lediglich den Ferromagnetismus bei Isolatoren zu erklären.

$ \begin{align} H_{\text{Heis}}&=-J\sum_{\langle i,j \rangle}\vec{S_i}\cdot\vec{S_j} \qquad \text{mit } i,j \text{ nächste Nachbarn}\\ &=-J\sum_{\langle i,j \rangle}\left(S^x_iS^x_j+S^y_iS^y_j+S^z_iS^z_j\right) \\ &=-J\sum_{\langle i,j \rangle}\left[\frac{1}{2}\left(S^+_iS^-_j+S^-_iS^+_j\right)+S^z_iS^z_j\right] \end{align} $

Verallgemeinerungen

Das Heisenberg-Modell kann verallgemeinert werden, indem man die Kopplungskonstante richtungsabhängig macht (d. h. indem man von isotropen zu anisotropen Systemen übergeht).

$ \begin{align} H_{\text{verallg. Heis}}&=-\sum_{\langle i,j \rangle}\left( J^x S^x_iS^x_j+J^y S^y_iS^y_j+J^z S^z_iS^z_j \right) \qquad \text{mit } i,j\; \mathrm{n\ddot achste}\text{ Nachbarn} \end{align} $

Ein Spezialfall des verallgemeinerten Heisenberg-Modells ist das XXZ-Modell, das seinen Namen daher hat, dass die Kopplungskonstante in zwei Richtungen übereinstimmt (d. h. $ J_x=J_y=J $) und in z-Richtung davon abweicht ($ J_z=\Delta $):

$ \begin{align} H_{\text{XXZ}}&=-\sum_{\langle i,j \rangle}\left[ J\left( S^x_iS^x_j+S^y_iS^y_j \right)+\Delta S^z_iS^z_j \right] \qquad \text{mit } i,j\; \mathrm{n\ddot achste} \text{ Nachbarn}\\ &=-\sum_{\langle i,j \rangle}\left[\frac{J}{2}\left(S^+_iS^-_j+S^-_iS^+_j\right)+\Delta S^z_iS^z_j\right] \end{align} $

Das Heisenberg-Modell und seine Spezialfälle werden oft im Zusammenhang mit einem angelegten Magnetfeld $ h=g_J\mu_{\mathrm B} B_0 $ in z-Richtung betrachtet. Der Hamiltonian lautet dann:

$ \begin{align} H_{\text{verallg. Heis,h}}&=-\sum_{\langle i,j \rangle}\left( J^xS^x_iS^x_j+J^yS^y_iS^y_j+J^zS^z_iS^z_j\right) - h \sum_i S^z_i \end{align} $

Eine weitere Verallgemeinerung beinhaltet die Einbeziehung von Kopplungen nicht nur zwischen nächsten Nachbarn sowie von Inhomogenitäten, $ J\rightarrow J_{ij} $:

$ \begin{align} H_{\text{verallg. Heis, inhom.}}&=-\sum_{\langle i,j \rangle}\left( J_{ij}^xS^x_iS^x_j+J_{ij}^yS^y_iS^y_j+J_{ij}^zS^z_iS^z_j\right) \quad \text{mit } i,j\;\mathrm{ Gitterpl\ddot atze} \end{align} $

Die Übergänge zum XY-Modell und zum Ising-Modell lassen sich am besten im n-Vektor-Modell darstellen.

Modell im k-Raum

Zur Analyse des Modells und zur Betrachtung der Anregungen ist es sinnvoll, das Modell im k-Raum zu betrachten. Die Transformation (diskrete Fouriertransformation) für die Spinoperatoren $ a\in\{x,y,z,+,-\} $ lautet:

$ S^a(\vec{k})=\sum_i e^{i\vec{k}\cdot \vec{R}_i}S^a_i $

Das verallgemeinerte Heisenbergmodell im Magnetfeld ohne Richtungsabhängigkeit $ (J^x_{ij}=J^y_{ij}=J^z_{ij}) $ mit $ J_{ij}=J_{ji} $ und $ J_{ii}=0 $ lässt sich dann schreiben als

$ \begin{align} H_{\text{heis,k}}&=-\frac{1}{N}\sum_{\vec{k}}J(\vec{k})\left( S^+(\vec{k})S^-(-\vec{k})+S^z(\vec{k})S^z(-\vec{k})\right)-hS^z(0) \end{align} , $

wobei auch die Austauschintegrale wellenzahlabhängig sind:

$ J(\vec{k})=\frac{1}{N}\sum_{ij} J_{ij} e^{i\vec{k}\cdot (\vec{R}_i-\vec{R}_j)} $

Grundzustand

In diesem Abschnitt wird der Grundzustand des verallgemeinerte Heisenberg-Modells im Magnetfeld ohne Richtungsabhängigkeit betrachtet. Der Grundzustand ist der Eigenzustand des Systems mit geringster Energie. Dieser ist stark abhängig von Vorzeichen der Kopplungskonstante $ J $.

$ \begin{align} \text{alle}\qquad J_{ij}>0 & \qquad\text{Ferromagnet}\\ \text{alle}\qquad J_{ij}<0 & \qquad\text{Anti-Ferromagnet/Ferrimagnet} \end{align} $

Unter eine Drehung aller Spinvektoren ändert sich das Heisenberg-Modell nicht, es ist also invariant unter einer Rotation. Für $ J>0 $ ist es für die Spins energetisch günstiger, sich in dieselbe Richtung auszurichten und man spricht von einem ferromagnetischen Grundzustand. Aufgrund der Rotationsinvarianz ist keine Richtung ausgezeichnet, daher wird die Ausrichtung in z-Richtung angenommen. Die Richtung im Festkörper wird durch Anisotropien oder durch ein schwaches angelegtes Magnetfeld bestimmt. Im ferromagnetischen Grundzustand $ |F\rangle $ sind alle Spins in eine Richtung ausgerichtet. Spezialisiert man noch

$ J_0=\sum_{i}J_{ij}=\sum_{j}J_{ij}, $

dann kann die Grundzustandsenergie so angegeben werden:

$ \begin{align} &H |F\rangle=E_0|F\rangle \\ \text{mit} \qquad &E_0=-NJ_0\hbar^2S^2-NhS \end{align} $

Dabei wurde der Eigenwert des $ S^z_i $-Operators als $ S^z_i|F\rangle=\hbar S|F\rangle $ benutzt. Für das Spin-1/2-Heisenberg-Modell ist $ S=1/2 $.

Für $ J<0 $ ist es energetisch günstiger, wenn benachbarte Spins in unterschiedliche Richtungen zeigen. Der Grundzustand ist daher stark vom unterliegenden Kristallgitter abhängig. Dieser kann dann antiferromagnetisch oder ferrimagnetisch sein. Für spezielle Kristallgitter kann es auch zu magnetischer Frustration kommen.

Magnonen und Spinwellen

In diesem Abschnitt werden die Anregungen aus dem ferromagnetischen Grundzustand des verallgemeinerten Heisenberg-Modells im Magnetfeld ohne Richtungsabhängigkeit betrachtet. Die Anregungszustände werden dem Quasiteilchen Magnon zugeordnet. Es handelt sich dabei um kollektive Anregungen des gesamten Kristallgitters und diese werden demnach auch als Spinwellen bezeichnet.

Die einmalige Anwendung des $ S^-(\vec{k}) $-Operators auf den ferromagnetischen Grundzustand gibt einen angeregten Eigenzustand des Heisenberg-Modells und wird (normierter) Ein-Magnonenzustand genannt:

$ |\vec{k}\rangle=\frac{1}{\hbar\sqrt{2SN}}S^-(\vec{k})|F\rangle $

Die zugehörige Energie des Zustands ist gegeben als:

$ E(\vec{k})=E_0+\hbar \omega(\vec{k}) \qquad \text{mit} \qquad \hbar \omega(\vec{k})=\hbar h +2S\hbar^2(J_0-J(\vec{k})) $

Die Anregungsenergie $ \hbar \omega(\vec{k}) $ wird dem schon erwähnten Magnon-Quasiteilchen zugeschrieben. Betrachtet man den Erwartungswert des $ S^z_i $-Operators auf diesen Zustand, so erhält man:

$ \langle\vec{k}|S^z_i|\vec{k}\rangle=\hbar\left(S-\frac{1}{N}\right) $

Dabei ist die linke Seite der Gleichung nicht mehr vom Platz i abhängig. Anschaulich bedeutet dies, dass die Anregung aus dem Grundzustand (Ein-Magnonenzustand) nicht durch das einfache Umklappen eines Spins auf einem Gitterplatz erzeugt wird, sondern dass der Ein-Magnonenzustand über das Gitter gleichmäßig verteilt ist. Daher wird der Zustand $ |\vec{k}\rangle $ als kollektive Anregung angesehen und als Spinwelle bezeichnet.

1D-Heisenberg-Modell

Im eindimensionalen Heisenberg-Modell sind die Spins aufgereiht auf einer Kette. Bei periodischen Randbedingungen ist die Kette zu einem Ring geschlossen. Die Eigenzustände und Eigenenergien für das eindimensionale Heisenberg-Modell wurden 1931 von Hans Bethe[3] mit dem Bethe-Ansatz exakt bestimmt.

Eigenvektoren und Eigenzustände

Da der $ S_z^\text{tot} $-Operator mit dem Hamiltonoperator kommutiert, zerfällt der ganze Hilbertraum in verschiedene Unterräume, die einzeln diagonalisiert werden können.

$ [S_z^\text{tot},H]=\sum^N_{i=1}[S^z_i,H]=0 $

Die verschieden Unterräume können durch ihre $ S_z^\text{tot}=-N \dots N $ Quantenzahlen beschrieben werden. Das heißt, dass die Eigenvektoren Superpositionen aus Basiszuständen mit derselben $ S_z^\text{tot} $ Quantenzahl sind. Im Bethe-Ansatz werden diese Zustände mittels der umgeklappten Zustände vom ferromagnetischen Grundzustand klassifiziert. Zum Beispiel wird der Zustand mit zwei umgeklappten Spins (also$ S^\text{tot}_z=N-2 $) an den Gitterplätzen $ n_1 $ und $ n_2 $ angegeben als:

$ |n_1n_2\rangle = |\uparrow\uparrow\underbrace{\downarrow}_{n_1}\uparrow \dots \uparrow\underbrace{\downarrow}_{n_2} \uparrow \dots \uparrow\rangle $

Die Eigenvektoren in einem Unterraum mit einer $ S_z $ Quantenzahl $ S_z=N-r $ sind Superpositionen aus allen möglichen Zuständen $ |n_1, n_2, \dots, n_{N-r}\rangle: $

$ |\Psi\rangle = \sum^N_{n1 < n2 < \dots < n_r}a(n_1, n_2, \dots, n_r)|n_1, n_2, \dots, n_r\rangle $

Die Koeffizienten sind ebene Wellen und durch den Bethe-Ansatz gegeben:

$ a(n_1, \dots, n_r) = \sum_{P\in S_r}\exp\left(i\sum^r_{j=1}k_{P_j}n_j+i\sum_{i<j}\theta_{P_iP_j} \right) $

Die Parameter können über die Gleichungen des Bethe-Ansatzes bestimmt werden:

$ \begin{alignat}{2} 2 \cot \frac{\theta_{ij}}{2}&=\cot\frac{k_i}{2}-\cot\frac{k_j}{2} &\qquad \text{mit}\quad& i,j = 1, \dots, r \\ Nk_i&=2\pi\lambda_i+\sum_{j \neq i}\theta_{ij}&&\lambda_i = {1, \dots, N-1} \end{alignat} $

Die Eigenvektoren sind gegeben durch alle Kombinationen der Bethe-Quantenzahlen $ (\lambda_1, \dots,\lambda_r) $, die die Gleichungen des Bethe-Ansatzes erfüllen. Eine Klassifikation der Eigenvektoren ist also über die Bethe-Quantenzahlen möglich. Die Bestimmung aller Eigenvektoren ist allerdings nicht trivial. Die zugehörige Energie des Zustands ist gegeben als:

$ (E-E_0)=J\sum^r_{j=1}(1-\cos k_j) $

Jordan-Wigner-Transformation

Das 1D-Heisenberg-Modell kann bei periodischen Randbedingungen mittels einer Jordan-Wigner-Transformation auf spinlose Fermionen auf einer Kette mit lediglich nächster Nachbarwechselwirkung abgebildet werden. Der Hamiltonian $ H_{\text{Heis}} $ des 1D-Heisenberg Modells kann demnach geschrieben werden als:

$ \begin{align} H_{\text{Heis}}&=-J\sum^N_{n=1}\vec{S}_n\cdot \vec{S}_{n+1}=-J\sum^N_{n=1}\left[\frac{1}{2}(S_n^+S^-_{n+1} + S_n^-S^+_{n+1})+S^z_nS^z_{n+1} \right] \\ &= -J\sum^N_{i=1}\left[ \left(c^\dagger_i c_{i+1} +\text{h.c}\right) + \left( c^\dagger_i c_i - \frac{1}{2}\right)\left(c^\dagger_{i+1} c_{i+1} - \frac{1}{2}\right) \right]\\ &= H_0 + H_J \end{align} $

Die $ c_i,c^\dagger_i $ sind Erzeugungs- und Vernichtungsoperatoren für spinlose Fermionen.

Literatur

  • Wolfgang Nolting: Grundkurs Theoretische Physik. Band 7 – Vielteilchen-Theorie. Springer Verlag.

Weblinks

Quellen

  1. W. Heisenberg: Zur Theorie des Ferromagnetismus. In: Zeitschrift für Physik. Band 49, Nr. 9, 1928, S. 619–636, doi:10.1007/BF01328601.
  2. Paul Dirac: On the Theory of Quantum Mechanics. In: Proc. Roy. Soc. London A. Band 112, 1926, S. 661–677.
  3. H. Bethe: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. (On the theory of metals. I. Eigenvalues and eigenfunctions of the linear atom chain), Zeitschrift für Physik A, Vol. 71, S. 205–226 (1931). SpringerLink.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.