Hamilton-Funktion

Hamilton-Funktion

Dieser Artikel behandelt die Hamilton-Funktion in der theoretischen Mechanik. Siehe Hamilton-Funktion (Kontrolltheorie) für die Bedeutung in der Theorie der optimalen Steuerung.

Die Hamilton-Funktion $ \mathcal H(\mathbf q, \mathbf p, t) $ (auch Hamiltonian, nach William Rowan Hamilton) eines Systems von Teilchen ist eine Legendre-Transformierte der Lagrange-Funktion, die, wenn keine rheonomen, also zeitabhängigen, Zwangsbedingungen vorliegen, mit der Gesamtenergie als Funktion der Orte und Impulse der Teilchen korrespondiert. Einfach ausgedrückt:

Die Hamilton-Funktion $ \mathcal H(q, p, t) $ eines Systems von Teilchen ist i. d. R. ihre Energie als Funktion des Phasenraumes. Sie hängt also von den (verallgemeinerten) Ortskoordinaten $ q=(q_1, q_2, \dotsc, q_n) $ und von den (verallgemeinerten) Impulskoordinaten $ p=(p_1, p_2, \dotsc, p_n) $ der Teilchen ab und kann auch von der Zeit $ t $ abhängen.

Definition

Die Hamilton-Funktion ist definiert durch

$ \mathcal H(q,p, t) := \left\{\sum_{i=1}^n \dot{q}_i p_i\right\} - \mathcal L(q, \dot{q}, t), \text{ mit } \dot{q} = \dot{q}(q, p, t) $

und hängt ab von

Sie geht hervor aus einer Legendre-Transformation der Lagrange-Funktion $ \mathcal L(t, q, \dot q) $ bezüglich der generalisierten Geschwindigkeiten, die von den generalisierten Koordinaten und ihren Geschwindigkeiten $ \dot q=(\dot q_1, \dot q_2, \dotsc, \dot q_n) $ abhängt:

$ \mathcal H(t,q,p)= \left\{\sum_{i=1}^n \dot q_i\, p_i\right\} - \mathcal L(t, q, \dot q) $

Dabei sind auf der rechten Seite mit den Geschwindigkeiten $ \dot q $ diejenigen Funktionen

$ \dot q(t, q, p) $

gemeint, die man erhält, wenn man die Definition der generalisierten Impulse

$ p_i := \frac{\partial \mathcal L}{\partial \dot q_i} $

nach den Geschwindigkeiten auflöst.

Eigenschaften

Ableitung

Das totale Differential der Hamilton-Funktion lautet:

$ \mathrm d\mathcal H = \sum_{i=1}^n \frac{\partial \mathcal H}{\partial q_i} \mathrm dq_i + \sum_{i=1}^n \frac{\partial \mathcal H}{\partial p_i} \mathrm dp_i + \frac{\partial \mathcal H}{\partial t} \mathrm dt $

Aufgrund der Produktregel erhält man

$ \mathrm d\mathcal H = \sum_{i=1}^n \left( p_i \mathrm d\dot{q}_i + \dot{q}_i \mathrm dp_i - \frac{\partial \mathcal L}{\partial q_i} \mathrm dq_i - \frac{\partial \mathcal L}{\partial \dot{q}_i} \mathrm d\dot{q}_i \right) - \frac{\partial \mathcal L}{\partial t} \mathrm dt, $

wobei wegen der Definition des verallgemeinerten Impulses $ \frac{\partial \mathcal L}{\partial \dot{q}_i} = p_i $ die ersten und letzten Terme in den Klammern die Summe 0 haben, sodass gilt:

$ \mathrm d\mathcal H = \sum_{i=1}^n \left(\dot{q}_i \mathrm dp_i - \frac{\partial \mathcal L}{\partial q_i} \mathrm dq_i\right) - \frac{\partial \mathcal L}{\partial t} \mathrm dt $

Mit der obigen Schreibweise des totalen Differentials folgen hieraus die partiellen Ableitungen der Hamilton-Funktion:

$ \frac{\partial \mathcal H}{\partial p_i} = \dot{q}_i $
$ \frac{\partial \mathcal H}{\partial q_i} = -\frac{\partial \mathcal L}{\partial q_i} = -\dot{p}_i $
$ \frac{\partial \mathcal H}{\partial t} = -\frac{\partial \mathcal L}{\partial t} $

Erhaltungsgröße

Die totale Ableitung der Hamilton-Funktion nach der Zeit ist identisch mit der partiellen:

$ \begin{align} \frac{\mathrm d\mathcal H}{\mathrm dt} & = \sum_{i=1}^f \left(\frac{\partial \mathcal H}{\partial p_i} \dot{p}_i + \frac{\partial \mathcal H}{\partial q_i} \dot{q}_i\right) + \frac{\partial \mathcal H}{\partial t}\\ & = \sum_{i=1}^f \left(\dot{q}_i \dot{p}_i - \dot{p}_i \dot{q}_i\right) + \frac{\partial \mathcal H}{\partial t}\\ & = \frac{\partial \mathcal H}{\partial t} \end{align} $

Wenn die Hamilton-Funktion also nicht explizit von der Zeit $ t $ abhängt, ist ihr Wert eine Erhaltungsgröße:

$ \mathcal H \neq \mathcal H(t) \Rightarrow \frac{\mathrm d\mathcal H}{\mathrm dt} = \frac{\partial \mathcal H}{\partial t} = 0 \Rightarrow \mathcal H = konst. $

Implikationen

Die Hamilton-Funktion bestimmt die zeitliche Entwicklung der Teilchenorte und -impulse durch die Hamiltonschen Bewegungsgleichungen:

$ \dot q_k =\frac{\partial \mathcal H}{\partial p_k} $
$ \dot p_k =-\frac{\partial \mathcal H}{\partial q_k} $

Ebenso bestimmt der Hamiltonoperator die Zeitentwicklung in der Quantenmechanik. Man erhält ihn in vielen Fällen aus der Hamiltonfunktion durch kanonische Quantisierung, indem man den algebraischen Ausdruck für $ \mathcal H(t, q, p) $ als Funktion von Operatoren $ q $ und $ p $ liest, die den kanonischen Vertauschungsrelationen genügen.

Beispiele

Massenpunkt

Bei einem Teilchen der Masse $ m $, das sich nichtrelativistisch in einem Potential $ V $ bewegt, setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen:

$ \mathcal H(t, \mathbf q, \mathbf p)=\frac{\mathbf p^2}{2\,m}+V(\mathbf q) $

Für ein relativistisches, freies Teilchen mit der Energie-Impuls-Beziehung

$ E^2-\mathbf p^2\,c^2=m^2\,c^4 $

gilt für die Hamilton-Funktion

$ \mathcal H(t, \mathbf q, \mathbf p)=\sqrt{m^2\,c^4+\mathbf p^2\,c^2}. $

Beim freien relativistischen Teilchen mit der Lagrangefunktion

$ \mathcal L= -m\,c^2 \sqrt{1-\dot{\mathbf q}^2/c^2} $

hängt der generalisierte Impuls $ p = \frac{\partial \mathcal L}{\partial \dot q} $ gemäß

$ \mathbf p=\frac{m \dot{\mathbf q}}{\sqrt{1-\dot{\mathbf q}^2/c^2}} $

von der Geschwindigkeit ab. Umgekehrt ist die Geschwindigkeit daher die Funktion

$ \dot{\mathbf q}=\frac{\mathbf p\,c^2}{\sqrt{m^2\,c^4+\mathbf p^2\,c^2}} $

des Impulses.

Harmonischer Oszillator

Die Hamilton-Funktion eines eindimensionalen harmonischen Oszillators ist gegeben durch:

$ \mathcal H(x, p) = \dot{x} p - \mathcal L(x, \dot{x}) = \frac{p^2}{2m} + \frac m2 \omega_0^2 x^2 = T + V = E $

Literatur

  • Herbert Goldstein, Charles P. Poole, Jr., John L. Safko: Klassische Mechanik. 3. Auflage. Wiley-VCH, Weinheim 2006, ISBN 3-527-40589-5.
  • Wolfgang Nolting: Grundkurs Theoretische Physik 2. Analytische Mechanik. 7. Auflage. Springer, Heidelberg 2006, ISBN 3-540-30660-9.

Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.