Fundamentale Wechselwirkung

Fundamentale Wechselwirkung

(Weitergeleitet von Grundkräfte der Physik)

Eine fundamentale Wechselwirkung ist einer der grundlegend verschiedenen Wege, auf denen physikalische Objekte (Körper, Felder, Teilchen, Systeme) einander beeinflussen können. Es gibt die vier fundamentalen Wechselwirkungen Gravitation, Elektromagnetismus, schwache Wechselwirkung und starke Wechselwirkung. Sie werden auch als die vier Grundkräfte der Physik bezeichnet.

Einzeln oder in Kombination bringen die vier fundamentalen Wechselwirkungen sämtliche bekannten physikalischen Prozesse hervor, seien es Prozesse zwischen Elementarteilchen oder zwischen Materie und Feldern in makroskopischen Ausmaßen, sei es auf der Erde, in Sternen oder im Weltraum. Weitere Arten von Wechselwirkungen scheinen zur Beschreibung der Natur nicht erforderlich; gelegentlich aufgestellte Hypothesen über eine „fünfte Kraft“, die zur Erklärung bestimmter Beobachtungen nötig wäre, konnten nicht bestätigt werden. Andererseits ist es bisher auch nicht gelungen, die Vielfalt der beobachteten Vorgänge mit weniger als vier fundamentalen Wechselwirkungen zu erklären.

Allerdings ist anzumerken, dass dieses einfache Bild, das etwa um die Mitte des 20. Jahrhunderts herausgearbeitet wurde, nach neueren Entwicklungen zu modifizieren ist: Zwei der vier Wechselwirkungen (die elektromagnetische und die schwache Wechselwirkung) werden im heutigen Standardmodell der Elementarteilchenphysik aus einer gemeinsamen Grundlage hergeleitet, die den Namen elektroschwache Wechselwirkung trägt. Daher wird zuweilen von insgesamt nur drei fundamentalen Wechselwirkungen gesprochen. Andererseits enthält das Standardmodell das neuartige Higgs-Feld, das durch eine besondere Art der Wechselwirkung den zunächst als masselos angesetzten Fermionen, z. B. den Elektronen, ihre Masse verleiht. Diese Wechselwirkung wird jedoch bisher (Stand 2017) gewöhnlich nicht als fünfte fundamentale Wechselwirkung bezeichnet.

Die vier Grundkräfte

Gravitation

Hauptartikel: Gravitation

Die Gravitation, auch Schwerkraft genannt, wurde im 17. Jahrhundert von Isaac Newton als Naturkraft identifiziert und mathematisch beschrieben. Sie geht von jedem Körper mit Masse aus und wirkt anziehend auf alle anderen Massen. Sie nimmt mit der Entfernung ab, lässt sich nicht abschirmen und hat eine unendliche Reichweite. Die von der Erde ausgehende Gravitation macht den Hauptanteil der Gewichtskraft aus, die unsere Lebenswelt entscheidend beeinflusst. Die Gravitation ist die vorherrschende Wechselwirkung zwischen den Planeten und der Sonne und somit die Ursache für die Gestalt des Sonnensystems. Sie hat maßgeblichen Einfluss auf den Zustand und die Entwicklung der Sterne, dominiert aber auch die großräumigen Strukturen des Universums. Die Gravitationskraft wirkt auch zwischen je zwei Gegenständen von der Größe, mit der wir täglich umgehen, ist dann aber so schwach, dass sie im Alltag praktisch vernachlässigbar ist und erst Ende des 18. Jahrhunderts von Henry Cavendish experimentell nachgewiesen werden konnte (Gravitationswaage). In Weiterentwicklung des newtonschen Gravitationsgesetzes ist die heute gültige Gravitationstheorie die allgemeine Relativitätstheorie, die Anfang des 20. Jahrhunderts von Albert Einstein aufgestellt wurde. Eine zugehörige Quantenfeldtheorie wurde bisher noch nicht gefunden.

Elektromagnetische Wechselwirkung

Die elektromagnetische Wechselwirkung wurde ab Mitte des 19. Jahrhunderts als eine Grundkraft der Natur identifiziert, nachdem James Clerk Maxwell die nach ihm benannten Maxwell-Gleichungen aufgestellt hatte, mit denen die Phänomene der Elektrizität, des Magnetismus und der Optik gleichermaßen beschrieben werden können. Die elektromagnetische Wechselwirkung geht von elektrischen Ladungen, magnetischen Dipolen und elektromagnetischen Feldern aus. Die Kräfte, die sie auf magnetische oder geladene Körper ausübt, können vom Menschen direkt wahrgenommen werden. Wie die Gravitation hat die elektromagnetische Wechselwirkung eine unendliche Reichweite. Sie wirkt aber je nach Vorzeichen der elektrischen Ladung anziehend oder abstoßend und lässt sich deshalb im Gegensatz zur Gravitation abschirmen oder gar eliminieren (positive und negative Ladungen kompensieren sich üblicherweise fast exakt). Auf die elektromagnetische Wechselwirkung können alltägliche Phänomene wie Licht, Elektrizität, Magnetismus, chemische Bindung, also auch chemischen Reaktionen und unterschiedliche Materialeigenschaften in Natur, Haus und Technik zurückgeführt werden. Die quantenfeldtheoretische Weiterentwicklung der klassischen Maxwell-Gleichungen führte Mitte des 20. Jahrhunderts zur Quantenelektrodynamik. Darin ist das Photon das allen elektromagnetischen Effekten zugrunde liegende Austauschteilchen.

Schwache Wechselwirkung

Hauptartikel: Schwache Wechselwirkung

Die auch als schwache Kernkraft bezeichnete schwache Wechselwirkung wurde 1934 von Enrico Fermi als die neue fundamentale Wechselwirkung entdeckt und beschrieben, die die Betaradioaktivität verursacht. Sie hat die extrem kurze Reichweite von etwa 10−16 m und erscheint deshalb äußerst schwach im Vergleich zur elektromagnetischen Wechselwirkung. Sie wirkt zwischen allen Teilchen vom Typ Lepton und Quarks, wobei sie als einzige der Wechselwirkungen Umwandlungen von einer Teilchenart in eine andere bewirken kann (z. B. Elektron wird Neutrino, up-Quark wird down-Quark, aber nicht zwischen Leptonen und Quarks). Die schwache Wechselwirkung ist auch die einzige, die die Symmetrie der Naturvorgänge gegenüber einer Spiegelung des Raums, einer Umkehrung der Ladungen oder der Zeitrichtung verletzt (s. Paritätsverletzung, Ladungskonjugation, Zeitumkehrinvarianz). Die schwache Wechselwirkung kann vom Menschen nicht direkt wahrgenommen werden, bewirkt aber z. B. unverzichtbare Zwischenschritte bei der Kernfusion von Wasserstoff zu Helium, aus der die Sonne ihre Strahlungsenergie bezieht. (Die Energie selbst wird durch die Starke Wechselwirkung freigesetzt.) Die quantenfeldtheoretische Beschreibung der schwachen Wechselwirkung beruht auf der Zusammenfassung mit der elektromagnetischen zur elektroschwachen Wechselwirkung, die ein Grundpfeiler des Standardmodells der Elementarteilchenphysik ist. Ihre Austauschteilchen sind das Z0, W+ und W, die durch ihre große Masse die kurze Reichweite bewirken. Im Zusammenhang mit der Erklärung der Masse dieser Austauschteilchen sagt die Theorie ein weiteres Teilchen voraus, das Higgs-Boson. Im Juli 2012 hat das Forschungszentrum CERN den Nachweis eines Teilchens am Large Hadron Collider bekanntgegeben, bei dem es sich mit großer Wahrscheinlichkeit um das Higgs-Boson handelt.[1]

Starke Wechselwirkung

Hauptartikel: Starke Wechselwirkung

Die starke Wechselwirkung, auch starke Kernkraft genannt, bindet die Quarks aneinander. Sie bewirkt damit den inneren Zusammenhalt der Hadronen, z. B. des Protons und Neutrons. Sie ist darüber hinaus Ursache der gegenseitigen Anziehungskräfte kurzer Reichweite, die zwischen den Hadronen wirken. Diese werden als Kernkräfte im engeren Sinn bezeichnet, da sie den Zusammenhalt der Protonen und Neutronen zum Atomkern ermöglichen. Damit bestimmt die starke Wechselwirkung die Bindungsenergie der Atomkerne und die Energieumsätze bei Kernreaktionen. Diese Energieumsätze sind typischerweise millionenfach größer als in der Chemie, wo sie von der elektromagnetischen Wechselwirkung zwischen den Atomhüllen herrühren.

Als stärkste Grundkraft der Natur wurde die starke Wechselwirkung seit den 1920er Jahren postuliert, konnte aber erst in den 1970er Jahren nach der Entdeckung, dass alle Hadronen aus zwei oder drei Quarks zusammengesetzt sind, zutreffend beschrieben werden. Die Quantenfeldtheorie der starken Wechselwirkung ist die Quantenchromodynamik (QCD). Sie stellt die Wechselwirkung zwischen zwei Quarks durch den Austausch eines Gluons dar. Die Teilchen tragen einen eigenen Typ Ladung, die im Unterschied zur elektrischen Ladung in drei Varianten auftritt und als Farbladung bezeichnet wird. Charakteristisch für die starke Wechselwirkung ist, dass die elementaren Teilchen, bei denen sie wirkt, nicht isoliert auftreten können. Versucht man z. B. Quarks voneinander zu trennen, muss so viel Energie aufgewendet werden, dass vermöge der Äquivalenz von Masse und Energie weitere Quarks entstehen und sich mit den anderen zu vollständigen Hadronen verbinden. Dieses als Confinement (Einschließung) bezeichnete Phänomen hat zur Folge, dass die Reichweite der starken Wechselwirkung effektiv nicht über den Radius eines Hadrons (ca. 10−15 m) hinausgeht. Die genauen Mechanismen der starken Wechselwirkung sind Gegenstand aktueller Forschung.

Tabellarische Auflistung

Grundkraft Austauschteilchen Masse
(GeV/c2)
Spin relative
Stärke
[2]
Reichweite
(m)[2]
Ladung
Gravitation Graviton (postuliert) 0 2 10−41 Masse
Elektromagnetische Kraft Photon 0 1 10−2 Elektrische Ladung
Schwache Wechselwirkung W+ 80 1 10−15 < 10−15 Schwache Ladung
W 80 1
Z0 91 1
Starke Wechselwirkung Gluon 0 1 1 ≈ 10−15 Farbladung

Hinweis: Die typische relative Stärke ist so angegeben, wie sie bei Prozessen im Energiebereich bis zu einigen GeV beobachtet wird. Da die Werte stark von der Energie abhängen, ist die schwache Wechselwirkung in einigen Quellen auch mit der relativen Stärke 10−13 angegeben, die Gravitation mit 10−38 oder 10−39. Die wesentliche Feststellung ist die Winzigkeit der Stärke der Gravitation sowie der kleine Wert der schwachen Wechselwirkung bei niedrigen Energien.

Hypothetische weitere Kräfte

Obwohl bisher noch keine Nachweise geliefert werden konnten, wird in der theoretischen Physik vielfach über weitere mögliche Kräfte spekuliert. Darunter fallen beispielsweise Technicolor-Theorien, Theorien der Supersymmetrie oder Stringtheorien. Neue makroskopische Kräfte werden gelegentlich unter dem Begriff „Fünfte Kraft“ zusammengefasst. Alle diese Kräfte stellen hypothetische Erweiterungen des Standard-Modells der Elementarteilchenphysik dar.

Vereinheitlichende Theorien

Kopplungskonstanten $ \alpha $ der Grundkräfte als Funktion der Energie $ E $
(s: starke,
w: schwache,
em: elektromagnetische Wechselwirkung,
g: Gravitation)

Eines der Ziele der Physik ist es herauszufinden, ob alle Grundkräfte oder Wechselwirkungen in einem vereinheitlichten Gesamtkonzept zu beschreiben sind. Damit könnte es möglich sein, alle bekannten Kräfte auf eine einzige Grundkraft zurückzuführen. Man spricht hier von vereinheitlichten Theorien. Beispielsweise ist die elektromagnetische Wechselwirkung eine Vereinheitlichung der elektrischen und der magnetischen Wechselwirkung. Weiter haben die elektromagnetische Wechselwirkung und die schwache Wechselwirkung bei Energien ab etwa 102 GeV etwa gleiche Stärke und können als elektroschwache Wechselwirkung vereinheitlicht beschrieben werden. Jedoch steht im gegenwärtigen Standardmodell der Elementarteilchenphysik die starke Wechselwirkung unverbunden daneben. Eine Theorie, die diese drei Grundkräfte des gegenwärtigen Standardmodells der Elementarteilchenphysik vereinheitlichen würde, wird große vereinheitlichte Theorie (Grand Unification Theory GUT) genannt. Als zentraler Bestandteil gilt die Annäherung der Kopplungskonstanten der drei Wechselwirkungen an einen gemeinsamen Wert, wenn die Prozesse bei immer höherer Energie untersucht werden. Aktuelle Theorien nehmen eine solche Annäherung bei etwa 1016 GeV an, das liegt um einen unerreichbaren Faktor 1012 über der derzeit höchsten in einem Experiment erzielten Teilchenenergie.

Eine Theorie, die alle vier Grundkräfte vereint, wird Weltformel oder Theory of Everything (TOE) genannt. Sie muss also über die noch hypothetische GUT hinaus eine bisher ebenfalls unbekannte Quantentheorie der Gravitation beinhalten. Stringtheorien oder Superstringtheorien gelten hier als aussichtsreiche Kandidaten, auch wenn sie bisher kein durch Experimente nachprüfbares Resultat ergeben haben.

Die folgende Tabelle beschreibt schematisch das Verhältnis verschiedener Grundkräfte zueinander und die entsprechende Hierarchie der Theorien der Physik:

Schritte zur Weltformel (Theory of everything)
Starke
Wechselwirkung
Elektrostatik Magnetostatik Schwache
Wechselwirkung
Gravitation
Elektromagnetische
Wechselwirkung
Quantenchromodynamik Quantenelektrodynamik Allgemeine
Relativitätstheorie
Elektroschwache Wechselwirkung Quantengravitation
Standardmodell
Große vereinheitlichte Theorie
Weltformel: Stringtheorie, M-Theorie, Schleifenquantengravitation
Anmerkung: Theorien in frühem Stadium der Entwicklung sind blau hinterlegt.

Literatur

Es gibt wohl wenige Bücher, die alle vier Grundkräfte gleich behandeln. Eine kurze Einführung findet sich jedoch z. B. in

Die drei fundamentalen Wechselwirkungen des Standardmodells der Elementarteilchen werden in den meisten einführenden Büchern zur Elementarteilchenphysik behandelt, z. B. in

  • Klaus Bethge, Ulrich E. Schröder: Elementarteilchen und ihre Wechselwirkungen – eine Übersicht. Wiley-VCH, Weinheim 2006, ISBN 3-527-40587-9
  • Harald Fritzsch: Elementarteilchen. Bausteine der Materie. Beck, München 2004, ISBN 3-406-50846-4
  • Jörn Bleckneuhaus: Elementare Teilchen: Von den Atomen über das Standard-Modell bis zum Higgs-Boson. 2. Auflage. Springer Spectrum, 2012, ISBN 3-642-32578-5
  • Christoph Berger Elementarteilchenphysik: Von den Grundlagen zu den Modernen Experimenten. 2. Auflage. Springer Verlag, 2006, ISBN 3-540-23143-9
  • David Griffiths: Introduction to Elementary particles. Wiley-VCH, Weinheim 2008, ISBN 978-3-527-40601-2

Einführende Bücher zur Gravitation sind z. B.

und zur Suche nach einer Theorie der Quantengravitation

Weblinks

Einzelnachweise

  1. CERN experiments observe particle consistent with long-sought Higgs boson. Pressemitteilung von CERN. 4. Juli 2012. Abgerufen am 15. Oktober 2012.
  2. 2,0 2,1 W. Greiner, B. Müller: Gauge Theory of Weak Interaction. Band 13. Springer, 2000, S. 2.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.