Gravity Recovery and Interior Laboratory

Gravity Recovery and Interior Laboratory

Gravity Recovery and Interior Laboratory


Missionslogo

Typ: Raumsondenpaar
Land: Vereinigte StaatenVereinigte Staaten Vereinigte Staaten
Organisation: National Aeronautics and Space AdministrationNASA NASA
COSPAR-Bezeichnung: 2011-046A/B
Missionsdaten
Startdatum: 10. September 2011 um 13:08:52.775 UTC
Startplatz: Cape Canaveral Air Force Station
Trägerrakete: Delta-7920H-10C
Missionsdauer: 464 Tage
Enddatum: 17. Dezember 2012 um 22:29:21 UTC
Landeplatz: kontrollierter Absturz in Nordpolregion
(an unbenanntem Berg zerschellt)
Bahndaten
Koordinatenursprung: Mond
Bahnhöhe: 55 km (anfänglich)
Umlaufzeit: 113 min (anfänglich)
Allgemeine Raumfahrzeugdaten
Startmasse: jeweils 307 kg
Leermasse: jeweils 201 kg
Abmessungen: (H × B × T) 1,09 × 0,95 × 0,76 m
Hersteller: Lockheed Martin Space Systems

Gravity Recovery and Interior Laboratory (GRAIL) war eine Mondmission der NASA, die im Rahmen des Discovery-Programms durchgeführt wurde. Der Name spielt auf engl. (Holy) Grail = (Heiliger) Gral an.

GRAIL bestand aus zwei im September 2011 gemeinsam gestarteten Raumsonden, die zwischen Anfang 2012 und Dezember 2012 den Mond umkreisten. Ziel der Mission war die genaue Vermessung des lunaren Schwerefelds und der Schwereanomalien, um daraus Aufschlüsse auf den inneren Aufbau des Mondes zu gewinnen.

Aufbau der Sonden

Die Mission wurde vom Jet Propulsion Laboratory geleitet. Die Sonden wurden von Lockheed Martin Space Systems basierend auf dem XSS-11-Satelliten gebaut.[1] Die Stromversorgung erfolgte über zwei ausklappbare, aber nicht schwenkbare Solarmodule (763 W), die Lithium-Ionen-Akkumulatoren aufluden (30 Ah bei 28 V).[2] Zur Lageregelung dienten Warmgas-Steuerdüsen und Reaktionsschwungräder. Die Daten wurden über eine S-Band-Funkverbindung an das Deep Space Network (DSN) übertragen.[3]

Die Sonden arbeiteten, wie die GRACE-Satelliten, nach dem SST-Prinzip (Satellite-to-Satellite Tracking): Sie umrundeten den Mond auf derselben Bahn und maßen mit dem Lunar Gravity Ranging System (LGRS) mittels elektromagnetischer Wellen im Ka-Band kontinuierlich die gegenseitige Distanz. Dadurch ließen sich Unregelmäßigkeiten des Schwerefeldes mit hoher Präzision analysieren.[3]

Als zusätzliche Nutzlast, zu Bildungszwecken für Schüler, befand sich auf jeder der beiden Sonden das Kamerasystem E/PO MoonKam mit jeweils fünf einzelnen Kameras, die Bilder von der Mondoberfläche, der Erde und den Sonden selbst übermittelten.[4] Die Sonden wurde nach einem landesweiten Wettbewerb für Schulklassen „Ebb“ (Ebbe) und „Flow“ (Flut) benannt.[5]

Funktionsprinzip der GRAIL-Sonden

Missionsverlauf

Flugbahnen zum Mond

Die beiden GRAIL-Sonden starteten zusammen auf einer zweistufigen Delta-7920H-10C-Rakete am 10. September 2011 um 13:08:52.775 UTC von der Cape Canaveral Air Force Station aus.

Nach dem Start erfolgte eine dreieinhalbmonatige Transferphase über den Lagrange-Punkt L1 des Erde-Sonne-Systems zum Mond, um die erforderliche Geschwindigkeitsänderung klein zu halten und andererseits die sehr niedrige Mondumlaufbahn von nur etwa 50 km Höhe möglichst exakt zu erreichen. Die Umlaufzeit der Sonden um den Mond betrug 113 Minuten. Auf dieser Höhe folgten die beiden Satelliten einander in etwa 175–225 km Abstand.[6]

Das Gravitationsfeld des Mondes von GRAIL bestimmt

Die eigentliche Wissenschaftsmission begann am 7. März 2012[7] und hatte eine Dauer von 82 Tagen. Diese war in drei Zyklen von je 27,3 Tagen gegliedert. Zweimal täglich standen die Sonden für je acht Stunden mit dem Deep Space Network (DSN) in Verbindung und übertrugen die Daten.[6]

Nach Abschluss der primären Wissenschaftsphase wurde eine Verlängerung der Mission beschlossen, die vom 30. August bis 3. Dezember 2012 andauern sollte. Dafür verringerten die Sonden ihre Höhe auf durchschnittlich 23 km, um noch genauere Messungen durchführen zu können.[8] Nach Ende der Mission im Dezember 2012 erfolgte eine fünftägige Außerdienststellungsphase, nach der die beiden Satelliten später auf dem Mond aufschlagen sollten, um einen unkontrollierten Absturz auf eventuell bedeutsame Stätten wie z. B. die Apollo-Landestellen zu vermeiden.[6]

Beide Raumsonden kollidierten zum planmäßigen Missionsende am 17. Dezember 2012 mit einem unbenannten Berg zwischen Philolaus und Mouchez nahe dem Mondnordpol. Um 22:28:51 UTC schlug GRAIL A („Ebb“) zuerst auf der Mondoberfläche auf, etwa 30 Sekunden später folgte GRAIL B („Flow“). Der Ort des Einschlags beider Satelliten wurde von der NASA nach der verstorbenen Astronautin Sally Ride benannt.[9]

Weblinks

 <Lang> Commons: Gravity Recovery and Interior Laboratory – Sammlung von Bildern, Videos und Audiodateien

Videos

Einzelnachweise

  1. Lockheed Martin spacecraft to be flown for NASA’s GRAIL lunar mission
  2. NASA: Gravity Recovery and Interior Laboratory (GRAIL) Launch Kit (PDF; 1,2 MB)
  3. 3,0 3,1 GRAIL: Spacecraft & Payload. MIT, abgerufen am 5. September 2011.
  4. GRAIL: Education & Outreach. MIT, abgerufen am 5. September 2011.
  5. NASA: Montana Students Submit Winning Names for NASA Lunar Spacecraft, vom 17. Januar 2012
  6. 6,0 6,1 6,2 GRAIL: Mission Design. MIT, abgerufen am 5. September 2011.
  7. NASA: NASA's Twin GRAIL Spacecraft Begin Collecting Lunar Science Data
  8. NASA: NASA's GRAIL Moon Twins Begin Extended Mission Science, vom 31. August 2012
  9. NASA: NASA's GRAIL Lunar Impact Site Named for Astronaut Sally Ride, vom 17. Dezember 2012


Diese Artikel könnten dir auch gefallen


Die News der letzten 14 Tage 7 Meldungen

21.10.2021
Teilchenphysik
Auf der Jagd nach Hyperkernen
Mit dem WASA-Detektor wird bei GSI/FAIR gerade ein besonderes Instrument aufgebaut.
18.10.2021
Galaxien | Schwarze Löcher
Entwicklung von heißem Gas von einem aktiven Schwarzen Loch
Ein internationales Team hat zum ersten Mal die Entwicklung von heißem Gas beobachtet, das von einem aktiven Schwarzen Loch stammt.
15.10.2021
Elektrodynamik | Festkörperphysik
Ultraschneller Magnetismus
Magnetische Festkörper können mit einem Laserpuls entmagnetisiert werden.
16.10.2021
Planeten | Elektrodynamik | Thermodynamik
Neues von den ungewöhnlichen Magnetfeldern von Uranus und Neptun
Tausende Grad heißes Eis - Wie es bei millionenfachem Atmosphärendruck entsteht und warum dieses leitende superionische Eis bei der Erklärung der ungewöhnlichen Magnetfelder der Gasplaneten Uranus und Neptun hilft.
14.10.2021
Elektrodynamik | Quantenphysik
Exotische Magnetzustände in kleinster Dimension
Einem internationalen Forscherteam gelang es erstmals, Quanten-Spinketten aus Kohlenstoff zu bauen.
15.10.2021
Sterne
Magentische Kräfte der Sonne: schnellere geladene Teilchen beobachtet
Protuberanzen schweben als riesige Wolken über der Sonne, gehalten von einem Stützgerüst aus magnetischen Kraftlinien, deren Fußpunkte in tiefen Sonnenschichten verankert sind.
14.10.2021
Planeten | Sterne
Der Planet fällt nicht weit vom Stern
Ein Zusammenhang zwischen der Zusammensetzung von Planeten und ihrem jeweiligen Wirtsstern wurde in der Astronomie schon lange vermutet.