Gitterebene

Gitterebene

(Weitergeleitet von Gitterebenenabstand)

Als Gitter- oder Netzebene bezeichnet man in der Kristallographie eine Ebene, die durch Punkte des Kristallgitters aufgespannt wird. Ihre Lage im Raum wird durch die Millerschen Indizes (hkl) beschrieben.

Beschreibung

Ein Kristallgitter lässt sich als ganzzahlige Linearkombination der Basisvektoren $ \vec{a}_1 $, $ \vec{a}_2 $ und $ \vec{a}_3 $ (Richtung der Kristallachsen) beschreiben. Eine Gitterebene ist durch ihre Schnittpunkte mit den Kristallachsen festgelegt. Die Millerschen Indizes (hkl) bezeichnen die Ebene, die durch die drei Punkte $ \tfrac{1}{h} \vec{a}_1 $, $ \tfrac{1}{k} \vec{a}_2 $ und $ \tfrac{1}{l} \vec{a}_3 $ geht. Also schneiden die Kristallachsen des jeweiligen Kristallsystems die Ebenen gerade an den Kehrwerten der einzelnen Indizes. Ein Index von Null bezeichnet dabei einen Schnittpunkt im Unendlichen, das heißt, der zugehörige Basisvektor ist parallel zur Ebene.

Der reziproke Gittervektor $ \vec{G}=h \vec{g}_1 + k \vec{g}_2 + l \vec{g}_3 $ steht senkrecht auf der durch die Millerschen Indizes (hkl) definierten Gitterebene. Die Vektoren $ \vec{g}_1 $, $ \vec{g}_2 $ und $ \vec{g}_3 $ bilden die Basisvektoren des reziproken Gitters.

Eine Gitterebenenschar besteht aus allen parallel verlaufenden Gitterebenen mit jeweils dem Gitterebenenabstand $ d_{\mathrm{hkl}} $. Dieser kann aus den Millerschen Indizes und den reziproken Gittervektoren berechnet werden:

$ d_{\mathrm{hkl}}=\frac{2\pi}{|h\,\vec{g}_{1}+k\,\vec{g}_{2}+l\,\vec{g}_{3}|} $

Für Kristallsysteme mit rechtwinkligen Achsen, also orthorhombische und höher symmetrische Gitter (tetragonale und kubische Systeme) gilt folgende Formel ($ a $, $ b $, $ c $ seien die Gitterkonstanten):

$ d_{\mathrm{hkl}}=\frac{1}{\sqrt{\left(\frac{h}{a}\right)^{2}+\left(\frac{k}{b}\right)^{2}+\left(\frac{l}{c}\right)^{2}}} $

Diese vereinfacht sich beispielsweise für kubische Systeme durch Gleichsetzen von $ a=b=c $ weiter:

$ d_{\mathrm{hkl}}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} $

Herleitungen

Eine Ebene ist eindeutig durch drei nicht auf einer Gerade liegende Punkte definiert. Dies sind hier die Schnittpunkte mit den Kristallachsen: $ \vec{P}_{1}=\frac{1}{h} \vec{a}_1 $, $ \vec{P}_{2}=\frac{1}{k} \vec{a}_2 $ und $ \vec{P}_{3}=\frac{1}{l} \vec{a}_3 $.

Die Punkte auf der Ebene lassen sich durch die Parameterform $ \vec r = \vec r_0 + \lambda \vec u + \mu \vec v $ beschreiben (mit Aufpunkt und zwei Richtungsvektoren, die in der Ebene liegen und nicht kollinear sind). Liegen zwei Punkte in der Ebene, so liegt deren Verbindungsvektor ebenfalls in der Ebene. Hierüber lassen sich die Richtungsvektoren konstruieren ($ \vec u = \vec P_1-\vec P_2 $ und $ \vec v = \vec P_2-\vec P_3 $). Als Aufpunkt wähle irgendeinen in der Ebene liegenden Punkt (hier $ \vec P_1 $):

$ \vec{r}=\frac{1}{h}\vec{a}_1+\lambda \left(\frac{1}{h}\vec{a}_1 - \frac{1}{k}\vec{a}_2\right) + \mu \left(\frac{1}{k}\vec{a}_2 - \frac{1}{l}\vec{a}_3\right) $

Bildet man das Skalarprodukt zwischen dem reziproken Gittervektor $ \vec{G}=h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3 $ und $ \vec{r} $ unter Ausnutzung der Relation $ \vec{g}_{i}\cdot\vec{a}_{j}=2\pi \delta_{ij} $, so ergibt sich:

$ \vec{G}\cdot\vec{r}=\underbrace{\frac{1}{h}\underbrace{\vec{G}\cdot\vec{a}_{1}}_{2\pi\, h}}_{=2\pi}+\lambda\underbrace{\left(\frac{1}{h}\underbrace{\vec{G}\cdot\vec{a}_{1}}_{2\pi\, h}-\frac{1}{k}\underbrace{\vec{G}\cdot\vec{a}_{2}}_{2\pi\, k}\right)}_{=0}+\mu\underbrace{\left(\frac{1}{k}\underbrace{\vec{G}\cdot\vec{a}_{2}}_{2\pi\, k}-\frac{1}{l}\underbrace{\vec{G}\cdot\vec{a}_{3}}_{2\pi\, l}\right)}_{=0}=2\pi $

Für einen Normalenvektor der Ebene $ \vec{n} $ sind die Skalarprodukte mit den Richtungsvektoren gleich Null ($ \vec{n}\cdot\vec{u}=0 $ und $ \vec{n}\cdot\vec{v}=0 $). Genau das trifft auf $ \vec{G}=h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3 $ zu, dieser steht also auf der Ebene (hkl) senkrecht.

Durch den Gitterpunkt am Koordinatenursprung verläuft parallel zur gerade betrachteten Ebene durch $ P_1 $ auch eine Ebene mit den Indizes (hkl). Deren Abstand ist die Projektion eines Verbindungsvektors beider Ebenen ($ \vec{r}-\vec{0}=\vec{r} $) auf den normierten Normalenvektor ($ \vec{G}/G $). Dies ergibt zusammen mit obiger Rechnung den Gitterebenenabstand:

$ \frac{\vec{G}}{G}\cdot\vec{r}=\frac{2\pi}{|h \vec{g}_1 + k \vec{g}_2 + l \vec{g}_3|}\equiv d_{\mathrm{hkl}} $

Im Nenner treten bei der Betragsbildung sowohl die Längen der reziproken Gittervektoren auf ($ \vec{g}_{i}^{\,2}=|\vec{g}_{i}|^{2} $) als auch die Projektionen der Gittervektoren aufeinander ($ \vec{g}_{i}\cdot\vec{g}_{j} $ mit $ i\neq j $). Letztere sind bei nicht-orthogonalen Kristallsystemen ungleich Null:

$ d_{\mathrm{hkl}}=\frac{2\pi}{|h\vec{g}_{1}+k\vec{g}_{2}+l\vec{g}_{3}|}=\frac{2\pi}{\sqrt{h^{2}\vec{g}_{1}^{\,2}+k^{2}\vec{g}_{2}^{\,2}+l^{2}\vec{g}_{3}^{\,2}+2hk\,\vec{g}_{1}\cdot\vec{g}_{2}+2hl\,\vec{g}_{1}\cdot\vec{g}_{3}+2kl\,\vec{g}_{2}\cdot\vec{g}_{3}}} $

Ein orthorhombisches Kristallsystem ist ein rechtwinkliges Kristallsystem mit drei 90°-Winkeln, jedoch ohne gleich lange Achsen. Die Gittervektoren lauten hier ausgedrückt bzgl. der kanonischen Einheitsbasis:

$ \vec{a}_1=a\,\hat{e}_x $
$ \vec{a}_2=b\,\hat{e}_y $
$ \vec{a}_3=c\,\hat{e}_z $

Und die dazugehörigen reziproken Gittervektoren sind ebenfalls orthogonal ($ \vec{g}_{i}\cdot\vec{g}_{j}=0 $ für $ i\neq j $):

$ \vec{g}_1=\frac{2\pi}{a}\,\hat{e}_x $
$ \vec{g}_2=\frac{2\pi}{b}\,\hat{e}_y $
$ \vec{g}_3=\frac{2\pi}{c}\,\hat{e}_z $

Setze diese in obige allgemeine Formel für den Gitterebenenabstand ein:

$ d_{\mathrm{hkl}}=\frac{2\pi}{\left|h\frac{2\pi}{a}\,\hat{e}_x + k\frac{2\pi}{b}\,\hat{e}_y + l\frac{2\pi}{c}\,\hat{e}_z\right|} = \frac{1}{\sqrt{\left(\frac{h}{a}\right)^{2}+\left(\frac{k}{b}\right)^{2}+\left(\frac{l}{c}\right)^{2}}} $

Das kubische Kristallsystem ist ebenfalls rechtwinklig, aber zusätzlich sind die Gitterkonstanten bezüglich jeder Kristallachse gleich $ a=b=c $ und die Formel vereinfacht sich weiter zu:

$ d_{\mathrm{hkl}}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} $

Siehe auch

  • Raumgitter

Diese Artikel könnten dir auch gefallen



Die letzten News


13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.
18.12.2020
Galaxienhaufen, gefangen im kosmischen Netz
Mehr als die Hälfte der Materie in unserem Universum entzog sich bislang unserem Blick.
18.12.2020
Zwei planetenähnliche Objekte, die wie Sterne geboren wurden
Ein internationales Forschungsteam unter der Leitung der Universität Bern hat ein exotisches System entdeckt, das aus zwei jungen planetenähnlichen Objekten besteht, die sich in sehr grosser Entfernung umkreisen.
16.12.2020
Neuen Quantenstrukturen auf der Spur
Der technologische Fortschritt unserer modernen Informationsgesellschaft basiert auf neuartigen Quantenmaterialien.
16.12.2020
Das Protonenrätsel geht in die nächste Runde
Physiker am Max-Planck-Institut für Quantenoptik haben die Quantenmechanik mit Hilfe der Wasserstoffspektroskopie einem neuen bis dato unerreichten Test unterzogen und sind der Lösung des bekannten Rätsels um den Protonenladungsradius damit ein gutes Stück nähergekommen.
03.12.2020
Laborexperimente könnten Rätsel um Mars-Mond Phobos lösen
Was lässt die Oberfläche des Mars-Monds Phobos verwittern? Ergebnisse der TU Wien liefern wichtige Erkenntnisse, bald soll eine Weltraummission Gesteinsproben nehmen.
26.11.2020
Gesund bis zum Mars
Tübinger Wissenschaftlerin untersucht mit internationalem Weltraumforschungsteam die Einflüsse der Raumfahrt auf den menschlichen Körper.
26.11.2020
Stammbaum der Milchstraße
Galaxien wie die Milchstraße sind durch das Verschmelzen von kleineren Vorgängergalaxien entstanden.
26.11.2020
Nanodiamanten vollständig integriert kontrollieren
Physikerinnen und Physikern ist es gelungen, Nanodiamanten vollständig in nanophotonischen Schaltkreisen zu integrieren und gleichzeitig mehrere dieser Nanodiamanten optisch zu adressieren. Die Studie schafft Grundlagen für zukünftige Anwendungen im Bereich der Quantensensorik oder Quanteninformationsverarbeitung.
26.11.2020
Der Sonne ein Stück näher
Der Borexino-Kollaboration, an der auch Wissenschaftler der TU Dresden beteiligt sind, ist es nach über 80 Jahren gelungen, den Bethe-Weizsäcker-Zyklus experimentell zu bestätigen.
22.11.2020
Entfernungen von Sternen
1838 gewann Friedrich Wilhelm Bessel das Wettrennen um die Messung der ersten Entfernung zu einem anderen Stern mit Hilfe der trigonometrischen Parallaxe - und legte damit die erste Entfernungsskala des Universums fest.