Gesetz von Hagen-Poiseuille

Gesetz von Hagen-Poiseuille

Mit dem Gesetz von Hagen-Poiseuille [poaː'zœj][1] (nach Gotthilf Heinrich Ludwig Hagen, 1797–1884 und Jean Léonard Marie Poiseuille, 1797–1869) wird der Volumenstrom $ \dot V $ – d. h. das geflossene Volumen V pro Zeiteinheit – bei einer laminaren stationären Strömung eines homogenen Newton’schen Fluids durch ein Rohr (Kapillare) mit dem Radius r und der Länge l beschrieben.

Formulierung

Das Gesetz lautet

$ \dot V=\frac{dV}{dt} = \frac{\pi \cdot r^4}{8 \cdot \eta}\frac{\Delta p}{l} = -\frac{\pi \cdot r^4}{8 \cdot \eta}\frac{\partial p}{\partial z} $

mit

Variable Bedeutung SI-Einheit
$ \dot V $ Volumenstrom durch das Rohr $ \frac{\rm m^3}{\rm s} $
$ r $ Innenradius des Rohres m
$ l $ Länge des Rohres m
$ \eta $ dynamische Viskosität der strömenden Flüssigkeit Pa·s
$ \Delta p $ Druckdifferenz zwischen Anfang und Ende des Rohres Pa
z Flussrichtung
Laminares Strömungsprofil

Dieses Gesetz folgt direkt aus dem stationären, parabolischen Strömungsprofil durch ein Rohr, das aus den Navier-Stokes-Gleichungen hergeleitet werden kann -- oder direkt aus der Definition der Viskosität, siehe unten. Bemerkenswert ist die Abhängigkeit des Volumendurchflusses von der vierten Potenz des Radius des Rohres. Dadurch hängt der Strömungswiderstand sehr stark vom Radius des Rohres ab, so würde beispielsweise eine Verringerung des Rohrdurchmessers auf die Hälfte den Strömungswiderstand auf das 16-fache erhöhen.

Das Gesetz gilt nur für laminare Strömungen. Bei größerem Durchfluss einer Rohrleitung, verbunden mit höheren Strömungsgeschwindigkeiten bzw. größeren Abmessungen, kommt es zu turbulenten Strömungen mit wesentlich höherem Strömungswiderstand als nach Hagen-Poiseuille zu erwarten wäre. Die konkreten Verhältnisse turbulenter Strömungen werden u. a. mit den Formeln von Blasius, Nikuradse bzw. Prandtl-Colebrook beschrieben.

In sehr dünnen Röhren, in denen die Grenzschicht maßgeblich das Strömungsprofil beeinflusst und nicht sehr klein gegenüber dem Radius ist, lässt sich dieses stark vereinfachte mathematische Modell der Strömung ebenfalls nicht anwenden.

Für kompressible Fluide (wie z. B. Gase) gilt ein modifiziertes Gesetz.

Herleitung

Hier ist die Überlegung, aus der das Hagen-Poiseuille-Gesetz und das ihr zugrundeliegende Strömungsprofil folgt: Bezeichne $ v(s) $ die Strömungsgeschwindigkeit an der Stelle $ s $ eines kreisförmigen Rohres mit Radius $ R $. Betrachten wir einen Hohlzylinder der Länge $ l $ und der Wanddicke $ ds $ zwischen den Radien $ s $ und $ s^+ = s+ds $. Der Zylinder solle sich im Gleichgewichtszustand befinden, also keine Beschleunigung erfahren, daher ist die Summe aller auf die Flächen wirkenden Kräfte gleich null. Aus der Reibung auf die Außen- bzw. Innenfläche $ A^+ $ bzw. $ A $ mit dem Haftreibungskoeffizienten $ \mu $ sowie der Druckdifferenz $ \Delta p $ auf die Hohlzylinder-Grundfläche $ dA = 2\pi \,s\,ds $ ergibt sich die Kraftgleichung:

$ \mu (A^+ dv^+ -A\,dv)/ds + dA \Delta p = 0 $.

Dabei ist $ \mu A^+ dv^+/ds $ die Reibung mit dem nach außen benachbarten Strömungszylinder, der den Radius $ s+ds $ hat. Die Geschwindigkeitsdifferenz $ \frac{dv^+}{ds} = \frac{dv}{ds}\vert_{s+ds} $ verteilt sich auf die Schichtdicke $ ds $ und wirkt entlang der Außenfläche $ A^+ = 2\pi s^+ l $. Analog gilt dies für die Reibung an der Innenfläche mit dem nach innen benachbarten Strömungszylinder.

Im Grenzübergang $ ds \to 0 $ ergibt sich eine Differentialgleichung zweiter Ordnung für $ v(s) $:
$ \begin{align} 2\pi\,l\,\left(s+ds\right) \frac{dv}{ds}\vert_{s+ds} - 2\pi\,l\,s\,\frac{dv}{ds}\vert_{s} + \frac{2\pi\,s\,ds\,\Delta p}{\mu} &= 0 \\ \left(s+ds\right) \frac{dv}{ds}\vert_{s+ds} - s\,\frac{dv}{ds} + \frac{s\,ds\,\Delta p}{\mu\, l} &= 0\\ s\,\frac{dv}{ds}+s\,\frac{d^2v}{ds^2}\,ds+\frac{ds\,dv}{ds} + \mathcal O \left(ds^2\right) - s\,\frac{dv}{ds} + \frac{s\,ds\,\Delta p}{\mu\, l} &= 0\\ s\,\frac{d^2v}{ds^2}\,ds+\frac{ds\,dv}{ds} + \frac{s\,ds\,\Delta p}{\mu\, l} &= 0 \\ \frac{d^2v}{ds^2}+\frac{dv}{s\, ds} + \frac{\Delta p}{\mu\, l} &= 0 \\ \end{align} $
Die Lösung muss die Randbedingung $ v(R) = 0 $ erfüllen und ist dadurch eindeutig bestimmt:

$ v(s) = \frac{\Delta p}{4 \mu\, l} \,(R^2 - s^2) $.

Dies ist genau das genannte quadratische Strömungsprofil. Durch Integration folgt dann das Gesetz von Hagen-Poiseuille:

$ \dot{V} = \int_0^{2\pi} \int_0^R v(s) s\,ds\,d\varphi = \frac{\pi R^4}{8\mu} \frac{\Delta p}{l} $.

Nicht kreisförmige Kanalquerschnitte

Rechteck-Kanal

Für einen Rechteck-Kanal mit den Abmessungen $ b $ und $ h $ lässt sich dieses Gesetz in der folgenden Form angeben:

$ \dot V = \frac{K\cdot\min(b,h)^3\cdot\max(b,h)}{12\eta l}\cdot \Delta p $

Hierbei ist

$ K=1-\sum_{n=1}^{\infty}\frac{1}{(2n-1)^5}\cdot\frac{192}{\pi^5}\cdot\frac{\min(b,h)}{\max(b,h)}\tanh\left((2n-1)\frac{\pi}{2}\frac{\max(b,h)}{\min(b,h)}\right) $

Die Abweichung vom exakten Wert bei Berechnung von K in erster Näherung (n=1) beträgt maximal 0,67 %, in zweiter Näherung 0,06 %, in dritter Näherung 0,01 %.

Einige Beispielwerte, berechnet in dritter Näherung:

$ \frac{\min(b,h)}{\max(b,h)} $ 0 1/10 1/5 1/4 1/3 1/2 2/3 1
$ K $ 1 0,9370 0,8740 0,8425 0,7900 0,6861 0,5873 0,4218

Formeln für weitere Querschnittsformen werden in vielen Lehrbüchern[2] hergeleitet.

Elliptischer Querschnitt

Für elliptische Querschnitte ergibt sich

$ \dot V = \frac{\pi}{64\eta} \cdot \frac{a^3 \cdot b^3}{a^2 + b^2} \cdot \frac{\Delta p}{l}\,, $

wobei $ a $ und $ b $ den minimalen und maximalen Durchmesser repräsentieren.

Man beachte den Spezialfall $ a=b=r $,

$ \dot V = \frac{\pi \cdot r^4}{8 \cdot \eta}\frac{\Delta p}{l}\,, $

bei dem sich die Gleichung auf die Gleichung für zylindrische Röhren reduziert.

Anwendungen

Im Gültigkeitsbereich des Gesetzes bewirkt etwa die Verengung eines runden Leitungsradius um 10 % einen Durchsatzrückgang um $ 1 - 0,9^4 = 34\% $. Um den ursprünglichen Durchfluss bei verkleinertem Radius wieder zu erreichen, muss somit die Druckdifferenz um über 52 % steigen.

Außerdem bildet das Gesetz von Hagen-Poiseuille die Grundlage einer Vielzahl von Modellgleichungen bei der Durchströmung von Schüttgütern.

Eingeschränkte Gültigkeit im Blut

Das Gesetz von Hagen-Poiseuille bezieht sich auf Newtonsche Flüssigkeiten. Bei Newtonschen Flüssigkeiten ist die Viskosität eine konstante Materialeigenschaft (und nur von der Temperatur abhängig). Ein Beispiel für eine solche Flüssigkeit ist Wasser. Das Blutplasma ist auch eine Newtonsche Flüssigkeit, nicht aber das Blut: Es ist eine inhomogene Suspension aus verschiedenen Zellen in Plasma. Hier ist die Viskosität von der Größe der Schubspannung (also der Strömungsgeschwindigkeit) abhängig. Weiterhin spielt auch die Deformierbarkeit der Erythrozyten eine Rolle. Diese können sich beispielsweise „geldrollenartig“ in dünnen Gefäßen aggregieren. Im Übrigen handelt es sich hier eher nicht um laminare, sondern turbulente Strömungszustände.

Dieses spezielle Fachgebiet der Rheologie des Blutes wird als Hämorheologie (englisch hemorheology) bezeichnet.

Literatur

  • Wolfgang Beitz; Karl-Heinrich Grote (Hrsg.): Dubbel. Taschenbuch für den Maschinenbau. 20. Auflage. Springer-Verlag, Berlin / Heidelberg / New York 2001, ISBN 3-540-67777-1
  • James P. Hartnett; Milivoje Kostic: Heat Transfer to Newtonian and Non-Newtonian Fluids in Rectangular Ducts. In: Advances in Heat Transfer, Volume 19, 1989
  • Rainer Klinke (Hrsg.): Physiologie. Zahlreiche Tabellen. 5. Auflage. Georg Thieme Verlag, Stuttgart / New York 2005, ISBN 3-13-796005-3

Einzelnachweise

  1. Aussprache von Poiseuille: Wie man Poiseuille auf Französisch ausspricht
  2. Henrik Bruus: Theoretical Microfluidics. Oxford University Press, 2008

Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.