Forschung auf der ISS

Forschung auf der ISS

A man wearing a blue polo shirt reached into a large machine. The machine has a large windows at the front with two holes in it for access, and is full of scientific apparatus. Transient space station hardware is visible in the background.
Michael Foale arbeitet während der Expedition 8 an der Microgravity Science Glovebox.
ESA-Astronaut Thomas Reiter arbeitet während der STS-116 Mission mit den Passive Observatories for Experimental Microbial Systems in Micro-G (POEMS) in dem Minus Eighty Degree Laboratory Freezer for ISS (MELFI) des Destiny-Moduls. MELFI ist eine Kühleinrichtung um für Experimente benötigte Materialien auf -80, -26 beziehungsweise +4° zu kühlen.
Thomas Reiter arbeitet während der STS-116 Mission mit den Passive Observatories for Experimental Microbial Systems in Micro-G (POEMS) in dem Minus Eighty Degree Laboratory Freezer for ISS (MELFI) des Destiny-Moduls. MELFI ist eine Kühleinrichtung um für Experimente benötigte Materialien auf -80, -26 beziehungsweise +4° zu kühlen.

Die Forschung auf der ISS bietet durch die internationale Raumstation ISS mehrere auf der Erde nicht erreichbare Bedingungen. So können außerhalb der ISS leicht Geräte für astronomische und meteorologische Untersuchungen angebracht werden und physikalische und biologische Proben längere Zeit den Weltraumbedingungen ausgesetzt werden. Die Experimente im Inneren der ISS nutzen vor allem die permanente Mikrogravitation. Außerdem dienen auch die Astronauten selbst als Probanden für Untersuchungen der (Weltraum-)Medizin, bei denen auch missionsbedingter Stress eine Rolle spielt.

Bislang wurden allein rund 50 Experimente mit deutscher Beteiligung begonnen und teilweise abgeschlossen,[1] weshalb im Folgenden einige typische Beispiele herausgegriffen werden.

Die ISS als Plattform im Weltraum

Außerhalb der ISS können Experimentierplattformen installiert werden, um Materialien und biologische Proben längerfristig Weltraumbedingungen auszusetzen, also unter anderem Vakuum, erhöhter UV-Strahlung, kosmischer Strahlung und extremen Temperaturunterschieden. Beispiele sind die European Technology Exposure Facility (EuTEF) sowie ROKVISS. ROKVISS ist der Prototyp eines Roboterarms für zukünftige Satellitenwartungsmissionen.[2][3]

Astronomie

An der ISS sind beziehungsweise werden auch astronomische Beobachtungsgeräte angebracht, die dadurch auf eigene Energieversorgung und Lagekontrolle verzichten können. Dabei widmet sich das Alpha-Magnet-Spektrometer (AMS) der Untersuchung der kosmischen Höhenstrahlung und Solar Monitoring Observatory (SOLAR) den Schwankungen der Sonnenstrahlung, die auch das Klima beeinflussen.[4]

Physik und Materialforschung

In der Mikrogravitation lassen sich atomare Teilchen länger in einem beobachtbaren Volumen halten, was genauere Atomuhren ermöglicht. Da die ISS schwächer von der Erde angezogen wird und sich schneller bewegt als irdische Atomuhren, sind damit auch genauere Überprüfungen der Allgemeinen und der Speziellen Relativitätstheorie möglich. Dies ist das Ziel des Atomic Clock Ensemble in Space (ACES).

Das Materials Science Laboratory (MSL) dient dem Schmelzen und der Solidifikation leitender Metalle, Legierungen und Halbleiter im extremen Vakuum oder in hochreinen Edelgasumgebungen in der Mikrogravitation. Dabei lassen sich unter anderem Diffusionsprozesse untersuchen, die auf der Erde durch die Konvektion überlagert werden.

Mit dem Elektromagnetischen Levitator (EML) kann man Metallschmelzen in der Schwebe halten, damit sie nicht mit den Gefäßwänden in Kontakt treten.[5]

Auch wesentliche Experimente zur Erforschung von Plasmakristallen wurden und werden auf der ISS durchgeführt.

Biologie und Biotechnologie

Proteinkristalle lassen sich unter Mikrogravitationsbedingungen leichter züchten. Dementsprechend wurden und werden auf der ISS verschiedene solche Experimente durchgeführt. Man braucht Proteine jedes Mal dann in Kristallform, wenn die Proteinstruktur ermittelt werden soll, meist mit Röntgenstrukturanalyse. Ohne die Struktur eines Proteins zu kennen, können keine Medikamente entwickelt werden, die das Protein oder Enzym beeinflussen.[6]

Humanmedizin

Bei längeren Aufenthalten in einer Mikrogravitationsumgebung kommt es zu Muskel- und Knochenschwund aufgrund der fehlenden Belastung. Entsprechende Untersuchungen auf der ISS dienen zum Einen der Grundlagenforschung an entsprechenden Krankheiten (zum Beispiel Osteoporose), aber auch dazu, Gegenmaßnahmen für längere bemannte Raumflüge (beispielsweise zum Mars) zu finden.

Auch der Blutkreislauf und das Immunsystem verhalten sich im Weltraum anders als auf der Erde, wobei bei letzterem auch missionsbedingter Stress aufgrund räumlicher Enge, hohem Arbeitspensum sowie abnormem Tag-Nacht-Rhythmus eine Rolle spielt.[7]

Außerdem werden auf der ISS Verfahren der Telemedizin erprobt, wie beispielsweise bei dem Experiment Advanced Diagnostic Ultrasound in Microgravity (ADUM).[8]

Erdbeobachtung

Beispiel für ein von der ISS aus aufgenommenes Foto: Abraum der Escondida Kupfer-Gold-Silber-Mine. Der Abraum wird von einem etwa 1 km langen Damm (links unten im Bild) zurückgehalten.

Die ISS dient auch der Fernerkundung und der GIS. Verantwortlich gesteuert wird dieser Bereich der Forschung vom Image Science and Analysis Laboratory im NASA-Johnson Space Center. Das Labor unterhält das The Gateway to Astronaut Photography of Earth.

Screenshot aus einem HDEV Video von der ISS (Panasonic, Aft View): Zu sehen sind Sardinien und Korsika.

Am europäischen Columbus-Labor wurden im April 2014 von einem Roboterarm vier commercial off-the-shelf Kameras im Rahmen der Mission High Definition Earth Viewing (HDEV) angebracht. Die HD-Kameras beobachten aus drei verschiedenen Blickwinkeln die Erde und senden Live-Videos. In Zusammenarbeit mit dem DLR und der NASA stellt die Universität Bonn die Videos und Bilder der HDEV-Kameras im Webportal "Columbus Eye" der Öffentlichkeit zur Verfügung. Das Projekt wird auch den Raumflug des deutschen Astronauten Alexander Gerst zur ISS begleiten.[9]

Von Astronauten auf der ISS aufgenommene Fotos dienen als Ergänzung zu den Aufnahmen von Erdbeobachtungssatelliten, da dabei der Aufnahmewinkel nicht starr festgelegt ist.[10][11]

Flora

Anfang 2016 gelang mit einer orange-gelben Zinnie die erste Aufzucht dieser blühenden Pflanze auf der ISS.[12] Vergleichbares gelang der Sowjetunion auf der Raumstation Saljut 7 bereits im Jahr 1982 [13], bei der Mission STS-51 sowie auch schon auf der ISS im Jahr 2012.[14][15]

Sonstiges

Die Forschung auf der ISS umfasst auch Tests kommerzieller Produkte, die allerdings vorwiegend der Produktplatzierung dienen, sowie Experimente im Rahmen der Öffentlichkeitsarbeit (z. B. SuitSat).

Siehe auch: Biolab, Materials International Space Station Experiment

Einzelnachweise

  1. Diverse Autoren: Spektrum der Wissenschaft EXTRA: Schwerelos – Europa forscht im Weltall. Hrsg.: Spektrum custom publishing, Space Channel, Deutsches Zentrum für Luft- und Raumfahrt. Spektrum custom publishing, 2010, ISBN 978-3-941205-48-2, S. 19.
  2. Sterne und Weltraum 12/2006; ISSN 0039-1263; Seite 46 ff.
  3. DLR Portal - ROKVISS. DLR, abgerufen am 26. März 2013.
  4. Natalie Krivova: Solar Variability and Climate: Does the Sun affect the Earth's climate? Max-Planck-Institut für Sonnensystemforschung, 28. Oktober 2003, abgerufen am 26. März 2013.
  5. Diverse Autoren: Spektrum der Wissenschaft EXTRA: Schwerelos – Europa forscht im Weltall. Hrsg.: Spektrum custom publishing, Space Channel, Deutsches Zentrum für Luft- und Raumfahrt. Spektrum custom publishing, 2010, ISBN 978-3-941205-48-2, S. 94 f.
  6. Michael Schumacher: Raumfahrtbiologische Forschung: Instrumente zur raumfahrtbiologischen Forschung. raumfahrer.net, 23. August 2003, abgerufen am 26. März 2013.
  7. Diverse Autoren: Spektrum der Wissenschaft EXTRA: Schwerelos – Europa forscht im Weltall. Hrsg.: Spektrum custom publishing, Space Channel, Deutsches Zentrum für Luft- und Raumfahrt. Spektrum custom publishing, 2010, ISBN 978-3-941205-48-2.
  8. Ultrasound from a Distance. NASA, 18. Dezember 2009, abgerufen am 26. März 2013 (englisch).
  9. Rienow, A.; Hodam, H. & Menz, G. (2014):Columbus Eye – HD - Erdbeobachtung von der ISS. In: Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN (DGPF Tagungsband 23 / 2014), Beitrag 112.
  10. Earth Observation Photography. 8. Januar 2009, archiviert vom Original am 10. Juli 2003, abgerufen am 26. März 2013 (PDF; 783 kB, englisch).
  11. Image Science and Analysis Laboratory: The Gateway to Astronaut Photography of Earth. Lyndon B. Johnson Space Center, abgerufen am 26. März 2013 (englisch).
  12. Kristina Beer: US-Astronaut: Erste "Weltraum-Blume" auf Raumstation ISS erblüht. In: Heise online. 18. Januar 2016, abgerufen am 18. Januar 2016.
  13. First species of plant to flower in space. Guinness World Records, abgerufen am 18. Januar 2016.
  14. Keith Cowing: No NASA, These Are Not The First Plants To Flower In Space. NASA Watch, 16. Januar 2016, abgerufen am 18. Januar 2016.
  15. Don Pettit: Letters to Earth: Astronaut Don Pettit (June 17-26 – Diary of a Space Zucchini). NASA, abgerufen am 29. Juni 2012.

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.