Bildrauschen

Bildrauschen

(Weitergeleitet von Farbrauschen)

Als Bildrauschen bezeichnet man die Verschlechterung eines digitalen bzw. elektronisch aufgenommenen Bildes durch Störungen, die keinen Bezug zum eigentlichen Bildinhalt, dem Bildsignal, haben. Die störenden Pixel weichen in Farbe und Helligkeit von denen des eigentlichen Bildes ab. Das Signal-Rausch-Verhältnis ist ein Maß für den Rauschanteil. Das Erscheinungsbild des Bildrauschens ist nicht direkt mit dem sogenannten „Korn“ bei der Fotografie auf herkömmlichem Filmmaterial vergleichbar, hat jedoch ähnliche Auswirkungen auf die technische Bildqualität, insbesondere die Detailauflösung. In manchen Bildern wird das Bildrauschen auch zur künstlerischen Gestaltung herangezogen.

Aufnahme in der Dämmerung. Typisch für Nacht- und Dämmerungsaufnahmen zeigt es sichtbares Rauschen schon bei geringer Vergrößerung. Gut sichtbar ist dies in den dunklen Bereichen, während in den hellen Bereichen kaum Rauschen sichtbar ist. Die Graufärbung der Aufnahme ist nicht typisch, sondern wurde nur zur Unterscheidung der hervorgehobenen Bildbereiche für dieses Beispiel hinzugefügt.

Ursachen für das Bildrauschen

Bei elektronischen Bildsensoren, wie CCD- und CMOS-Sensoren ist das Bildrauschen zu einem großen Teil Dunkelrauschen; es tritt also auf, ohne dass Licht auf den Sensor fällt. Grund für dieses Rauschen ist einerseits der Dunkelstrom der einzelnen lichtempfindlichen Elemente (Pixel), andererseits auch Rauschen des Ausleseverstärkers (Ausleserauschen). Bei einzelnen Bildpunkten mit besonders hohem Dunkelstrom (verursacht durch Fertigungsungenauigkeiten oder Defekte im Bildsensor) spricht man von Hotpixeln. Mit einschlägigen Nachbearbeitungsverfahren kann dieser unerwünschte Effekt unterdrückt werden. Da der Dunkelstrom von Pixel zu Pixel unterschiedlich ist, können diese Variationen durch Subtraktion eines Dunkelbilds eliminiert werden; damit wird das Dunkelrauschen reduziert.

Zusätzlich zum Dunkelrauschen gibt es auch (meist kleinere) Anteile des Bildrauschens, die von der aufgenommenen Lichtmenge abhängen. Dazu zählt das Schrotrauschen, das durch die Zufallsverteilung der Anzahl von Photonen entsteht, die in einem Pixel auftreffen, sowie zufällige Schwankungen der Lichtempfindlichkeit der Pixel (daher auch häufig als „Photonenrauschen“ bezeichnet).

Bei Digitalkameras werden die Helligkeitswerte in digitale Werte (ganze Zahlen) umgewandelt. Bei diesem Prozess entsteht das sogenannte Quantisierungsrauschen, weil die kontinuierlichen Signale des Bildsensors in diskrete Werte umgewandelt werden. Weitere Rauschanteile können durch Nichtlinearitäten bei der Wandlung des Sensorsignals in digitale Bilddaten entstehen.

Das Rauschen bei einem Bildsensor steigt bei höheren Belichtungsindizes (nach ISO) an. Bildrauschen wird auch durch die Pixelgröße sowie den Pixelabstand des Bildsensors beeinflusst. Je geringer der Abstand zwischen den einzelnen Pixeln (hier: Fotodioden) eines Bildsensors sind und je kleiner die Pixelgröße ist, desto weniger Photonen (Licht) können die einzelnen Pixel aufnehmen, und das bewirkt mehr Rauschen bzw. mehr Störsignale beim Bildsensor. Im Englischen wird der Abstand der Pixel bzw. Fotodioden untereinander, d. h. die Pixel-Dichte, als "pixel pitch" eines Bildsensors bezeichnet. In der Praxis bedeutet dies, je mehr Pixel beispielsweise ein APS-C-Format-Bildsensor hat, desto größer wird das Bildrauschen gegenüber anderen APS-C-Format Sensoren mit weniger Pixeln, denn mehr Pixel bedeutet zugleich einen geringeren Pixelabstand und eine geringere Pixelgröße der einzelnen Fotodioden am Bildsensor. Diese Aussagen beziehen sich allerdings nur auf einen Vergleich der Bilder bei 100%-Darstellung am Bildschirm, also bei unterschiedlichen Ausgabegrößen. Werden die Bilder dagegen in der gleichen Ausgabegröße betrachtet, ist das Rauschverhalten bei gleicher Größe und Bauart des Sensors weitgehend unabhängig von der Pixelgröße bzw. dem "pixel pitch".[1]

Klassifizierung des Rauschens

Beispiel für reines farbiges 1/f-Rauschen (Chrominanzrauschen)
Beispiel für reines graustufiges 1/f-Rauschen (Luminanzrauschen)
VLF-Farbrauschen

Reines Rauschen ist dann gegeben, wenn keine Bildinformation vorhanden ist. Die nebenstehenden Bilder geben zweidimensionale Beispiele für reines Farbrauschen (Chrominanzrauschen) und reines Helligkeitsrauschen (Luminanzrauschen) mit einer typischen spektralen Leistungsdichteverteilung, bei der die Signalamplituden mit einer 1/f-Charakteristik abnehmen (1/f-Rauschen).

Chrominanzrauschen (auch Farbrauschen) ist dann gegeben, wenn in den Farbkanälen eines digitalen Bildes unabhängige Zufallssignale vorhanden sind.

Neben dem beschriebenen Pixelrauschen tritt bei vielen Digitalkameras ein weiteres, zufälliges Rauschmuster mit sehr niedriger Frequenz auf (very low frequency noise), das sich insbesondere bei homogenen Flächen in mittleren und dunkleren Bildbereichen in Form wolkiger Farbmuster störend bemerkbar macht.

Einflüsse auf das Bildrauschen

Der Umfang des Bildrauschens ist in erster Linie von der Qualität der Digitalkamera abhängig. Entscheidenden Einfluss hat die Größe der einzelnen Pixel. Bei gleicher Bildauflösung hat ein kleiner Sensor im Allgemeinen ein höheres Rauschen als ein großer Sensor mit geringerer Packungsdichte. Weiterhin haben die Qualität der analogen Signalverarbeitung und der Analog-Digital-Wandlung sowie die eingestellte ISO-Empfindlichkeit den größten Einfluss auf die Bildqualität.

Während Sensortechnik und Signalverarbeitung von der Kamera vorgegeben sind, können andere Aufnahmeparameter zumindest teilweise vom Fotografen beeinflusst werden, in erster Linie die ISO-Einstellung („Filmempfindlichkeit“). Eine Erhöhung der „Empfindlichkeit“ bedeutet eine Verstärkung der Signale des Aufnahmesensors, wobei die Störungen in gleichem Maße mitverstärkt werden.

Gut sichtbar wird das Bildrauschen in gleichförmigen, besonders in dunklen oder blauen Bildbereichen. Unterbelichtete, nachträglich am Computer aufgehellte Aufnahmen rauschen in der Regel stärker als korrekt belichtete Bilder.

Bildrauschen bei steigender Sensortemperatur

Weiterhin steigt das Rauschen mit steigender Sensortemperatur. Kameras, die den Bildsensor auch zur Darstellung des Sucherbilds nutzen („Live-Vorschau“) und in diesem Modus betrieben werden, rauschen in der Regel stärker als übliche digitale Spiegelreflexkameras, die den Sensor nur zur eigentlichen Aufnahme aktivieren und sich dadurch weniger stark erwärmen, unter der Voraussetzung derselben Sensortechnologie. Um eine Erwärmung zu verhindern, werden zunehmend Active Pixel Sensoren eingesetzt, die sich durch eine geringere Leistungsaufnahme auszeichnen, als CCD-Sensoren.

Ebenso erhöht sich das Rauschen mit steigender Belichtungszeit, insbesondere bei Nachtaufnahmen oder anderen Situationen mit sehr langen Belichtungszeiten steigt die Gefahr des Auftretens von Hotpixeln. Die meisten Digitalkameras bieten daher an, bei Langzeitbelichtungen durch eine unmittelbar an die eigentliche Aufnahme anschließende Dunkelbelichtung ein Referenzbild zu erzeugen, dessen Rauschen subtrahiert wird.

Eine weitere Ursache für Störungen sind Pixelfehler, die umso häufiger auftreten, je kleiner die Pixel sind, und die darüber hinaus auch durch Höhenstrahlung (zum Beispiel beim Transport oder der Verwendung von Bildsensoren mit Flugzeugen oder Raumschiffen) hervorgerufen werden können.[2]

Verfahren zur Rauschunterdrückung

Vorschau eines Programms zur Rauschunterdrückung.
Der quadratische Ausschnitt ist rauschgefiltert.

Störendes Bildrauschen kann durch verschiedene Rauschunterdrückungsverfahren reduziert werden. Bei den meisten Verfahren nimmt der Fotograf jedoch Einbußen anderer Qualitätsmerkmale (beispielsweise Bildschärfe oder Kontrastumfang) einer Fotografie in Kauf.

Folgende Verfahren werden üblicherweise eingesetzt:

  • Kameraseitige Unterdrückung des Bildrauschens: Während der Speicherung der Fotografie werden spezielle Algorithmen angewendet, die das Bildrauschen minimieren. Siehe Rauschfilter.
  • Verwendung von Sensoren geringer Packungsdichte (zum Beispiel in digitalen Spiegelreflexkameras)
  • Belichtung auf die „rechte Seite des Histogramms“. Dabei wird das Bild derart belichtet, dass das Motiv möglichst hell abgebildet wird. Unter der Annahme eines „konstanten“ Rauschpegels des Sensors werden somit die gefährdeten dunklen Stellen gemieden. Dabei ist natürlich zu vermeiden, dass bildrelevante Teile überbelichtet werden (dies gilt auch für die einzelnen Farbkanäle Rot, Grün und Blau).
  • Bildbearbeitungsprogramme: Eine spezielle Funktion in manchen Bildbearbeitungsprogrammen, aber auch speziell ausschließlich auf das Entrauschen spezialisierte Programme erlauben die Reduzierung des Bildrauschens. Der Vorteil bei einer Verarbeitung nach der eigentlichen Aufnahme liegt darin, dass der Benutzer die Rauschunterdrückung selbst, angepasst auf die Aufnahme, optimieren kann. Außerdem bleibt so die Originaldatei erhalten.

Das Dunkelrauschen kann auch durch Kühlen des Sensors reduziert werden, jedoch wird dies bisher nur bei Kameras für astronomische und wissenschaftliche Zwecke sowie bei technischen Anwendungen wie IR- und Wärmebildkameras eingesetzt.

Einige Kameras wie beispielsweise die Fujifilm FinePix X10 besitzen einen EXR-CMOS Sensor. Mit der EXR-Technik können bei schlechten Lichtverhältnissen zwei Pixel zusammengeschaltet werden, auch Binning genannt. Dadurch halbiert sich zwar die Auflösung, aber im Gegenzug erhöht sich die effektive Pixelgröße bzw. der effektive Pixelabstand, wodurch sich das Bildrauschen um etwa ein Drittel verringern lässt.[3] In dieselbe Richtung zielen Verfahren in einigen Kameras, bei sehr hohen ISO-Einstellungen die Bilder nur in stark reduzierter Auflösung zu speichern, indem benachbarte Pixel so miteinander verrechnet werden, dass das Zufallsrauschen verringert wird.

Einzelnachweise

  1. Contrary to conventional wisdom, higher resolution actually compensates for noise. dxomark, 16. November 2008, abgerufen am 8. April 2013.
  2. Markus Bautsch: Aufnahme – Bildsensoren, Digitale bildgebende Verfahren, Wikibooks (2012)
  3. Testbericht: Fujifilm FinePix X10 von Michael Ludwig, 10. November 2011 auf chip.de, letztmals abgerufen: 17. Januar 2012.

Weblinks

 <Lang> Commons: Image noise – Sammlung von Bildern

Diese Artikel könnten dir auch gefallen



Die letzten News


25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
02.02.2021
Entwicklung einer rekordverdächtigen Quelle für Einzelphotonen
Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann.
02.02.2021
Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
01.02.2021
Durch die fünfte Dimension zur Dunklen Materie
Eine Entdeckung in der theoretischen Physik könnte helfen, das Rätsel der Dunklen Materie zu lösen.