Elektrischer Fluss

Elektrischer Fluss

Physikalische Größe
Name Elektrischer Fluss
Formelzeichen $ \mathit{\Psi} $
Größen- und
Einheitensystem
Einheit Dimension
SI C = A·s T
Gauß (cgs) Fr M1/2 · L3/2 · T−1
esE (cgs) Fr M1/2 · L3/2 · T−1
emE (cgs) abC = Bi·s L1/2·M1/2

Der elektrische Fluss oder auch Verschiebungsfluss $ \mathit{\Psi} $ (Psi) ist eine physikalische Größe aus der Elektrostatik und Elektrodynamik.

Obwohl der elektrische Fluss mathematische Eigenschaften hat, die denen einer realen Strömung in einem Strömungsfeld ähneln, transportiert er nichts Materielles wie etwa Ladungsträger, sondern überträgt lediglich die Wirkung des zugrundeliegenden Kraftfeldes von einem Punkt zu einem anderen.

Je nach Zusammenhang wird der elektrische Fluss unterschiedlich definiert.

Elektrotechnische Definition

In der elektrotechnischen Fachliteratur wird meist folgende Festlegung verwendet. Dabei werden die Beziehungen zur Materie sowie zum Verhältnis von Flüssen und Feldstärken über die Materialgleichungen der Elektrodynamik beschrieben.

Da der elektrische Fluss nicht einzelnen Raumpunkten zugeordnet werden kann (manchmal behilft man sich daher in der Darstellung des Flusses mit räumlichen ausgedehnten Flussröhren), wird jedem Raumpunkt eine elektrische Flussdichte $ D $ zugeordnet. Dabei trägt nur jener Anteil des elektrischen Flusses zum elektrischen Fluss durch die Fläche $ A $ bei, der normal zu dieser Fläche steht. Mathematisch wird dieser Umstand in der Vektoranalysis mittels Vektoren und durch die Operation des inneren Produktes als ein Flächenintegral ausgedrückt:

$ \mathit{\Psi} = \int \limits_{\mathcal{A}} \vec{D} \cdot \mathrm d\vec{A} $

Daraus ergibt sich für diese Definition die SI-Einheit Ampere·Sekunde.

Im elektrostatischen Fall kann der elektrische Fluss zwecks einfacher Vorstellung bildlich dargestellt werden:

  • die Richtung der elektrischen Feldstärke an jeder Stelle des Raumes stellt man durch Feldlinien dar, die definitionsgemäß von positiven Ladungen weg und zu negativen Ladungen hin zeigen.
  • die Dichte der elektrischen Ladungen an den Oberflächen der Elektroden wird dargestellt durch die Dichte der Feldlinien an den Leiteroberflächen.
  • dann entspricht der elektrische Fluss, der an einer Elektrode entspringt bzw. an ihr endet, der Anzahl der Feldlinien, die insgesamt von dieser Elektrode ausgehen oder an ihr enden, und damit der Ladungsmenge dieser Elektrode.

Dieser Umstand kann auch so ausgedrückt werden, dass eine elektrische Spannung $ U $ an einem Kondensator mit der Kapazität $ C $ eine bestimmte Ladung an die Platten (Elektroden) des Kondensators transportiert. Diese Spannung bewirkt zwischen den Kondensatorplatten einen elektrischen Fluss der Größe

$ \mathit{\Psi} = C \cdot U $,

womit die elektrische Ladung $ Q $ des Kondensators genau mit dem elektrischen Fluss zwischen den Elektroden übereinstimmt:

$ \mathit{\Psi} = Q $

Physikalische Definition

In der physikalischen Fachliteratur, etwa im Gerthsen Physik, wird der elektrische Fluss $ \phi $ bzw. $ \mathit{\Psi} $ im Vakuum festgelegt in der Form:[1]

$ \phi = \frac{\mathit{\Psi}}{\varepsilon_0} = \int \limits_{\mathcal{A}} \vec{E} \cdot \mathrm d\vec{A} $

mit der elektrischen Feldkonstante $ \varepsilon_0 $.

Daraus ergibt sich für diese Definition die SI-Einheit Volt·Meter.

Diese Begriffsdefinition des elektrischen Flusses $ \phi $ unterscheidet sich trotz gleicher Namensgebung von der Begriffsfestlegung des elektrischen Flusses $ \mathit{\Psi} $ in der Elektrotechnik; so entspricht der elektrische Fluss $ \phi $ hier nicht dem Flächenintegral der elektrischen Flussdichte $ D $, sondern dem der elektrischen Feldstärke $ E $. Außerdem ergeben sich bei dieser Festlegung in Materie, insbesondere bei nichtlinearen und anisotropen Materialien, komplizierte Verhältnisse.

Literatur

  • Karl Küpfmüller, Gerhard Kohn: Theoretische Elektrotechnik und Elektronik. Springer, 1993, ISBN 3-540-56500-0, S. 80–88.
  • Adolf J. Schwab: Begriffswelt der Feldtheorie. Springer, 2002, ISBN 3-540-42018-5, S. 5–9.
  • Dieter Metz, Uwe Naundorf, Jürgen Schlabbach: Kleine Formelsammlung Elektrotechnik. Carl Hanser, ISBN 3-446-22545-5 (hanser.de [PDF]).

Einzelnachweise

  1. Dieter Meschede: Gerthsen Physik, 24. Auflage, Springer, 2010, ISBN 978-3-642-12893-6, S. 318

Diese Artikel könnten dir auch gefallen



Die letzten News


07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.