Einsteinsche Feldgleichungen

Einsteinsche Feldgleichungen

Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Feldgleichung auf einer Mauer in Leiden

Im Rahmen der allgemeinen Relativitätstheorie wird durch die einsteinschen Feldgleichungen (nach Albert Einstein, auch Gravitationsgleichungen) das physikalische Phänomen der Gravitation durch Methoden der Differentialgeometrie mathematisch formuliert.

Die Grundidee ist dabei die Verknüpfung einer Energieverteilung mit der Geometrie der Raumzeit. Die Energieverteilung wird dabei durch einen Energie-Impuls-Tensor repräsentiert, während ein metrischer Tensor die Geometrie der Raumzeit darstellt.

Grundsätzliche Annahmen und Forderungen

Zur Aufstellung der Feldgleichungen sind zunächst physikalische Überlegungen notwendig, da die Form der Gleichungen postuliert werden muss.

So wie die Masse das Gravitationsfeld in der newtonschen Gravitationstheorie verursacht, ist der natürlichste Ansatz für deren Verallgemeinerung, dass das Gravitationsfeld mathematisch von der Gestalt des Energie-Impuls-Tensors $ \ T_{\mu\nu} $ abhängig ist. Nun ist $ \ T_{\mu\nu} $ kein beliebiger symmetrischer Tensor, da er $ \nabla_\nu T^{\mu \nu}=0 $ erfüllen muss, d. h., die Divergenz des Energie-Impuls-Tensors muss lokal, bei fester Raum- und Zeitkoordinate, verschwinden, damit das Gesetz der Energie- und Impulserhaltung aufrechterhalten wird, da diese nur eine lokale Gültigkeit haben.

Man macht den Ansatz, welcher sich aus dem Äquivalenzprinzip ergibt, dass die Gestalt der Feldgleichungen, welche die Gravitation auf die Raumzeit verallgemeinern, auf der rechten Seite den Energie-Impuls-Tensor als Quelle des Feldes beinhalten. Da somit auf der rechten Seite ein Tensor steht, muss dies auch für die linke Seite gelten. Dieser Tensor sollte die geometrischen Eigenschaften der Raumzeit repräsentieren und eine Kombination des metrischen Tensors und eines Tensors, der die Krümmung beschreibt, darstellen. Die Feldgleichungen nehmen also die Form

$ \ G_{\mu\nu}=\kappa T_{\mu\nu} $

an, wobei der geometrische Tensor $ G_{\mu\nu} $ als Einsteintensor bezeichnet wird. Die Konstante $ \kappa = 8 \pi G / c^{4} $ heißt Einsteinsche Gravitationskonstante oder einfach Einsteinkonstante und wird als Proportionalitätskonstante angenommen. Diese beiden Größen sind zu bestimmen.

Aus den bisherigen Überlegungen ergeben sich zusammengefasst diese Forderungen:

  1. $ \ G_{\mu\nu}=0 $    für eine flache Raumzeit, d. h. in Abwesenheit von Gravitation.
  2. $ \ \nabla_\nu T^{\mu \nu}=0 $   für die Energie-Impuls-Erhaltung.
  3. $ \ \nabla_\nu G^{\mu \nu}=0 $  aufgrund obiger Forderung für $ T_{\mu\nu} $.
  4. $ \ G_{\mu\nu} $  ist eine Kombination aus dem Krümmungstensor $ R_{\mu \nu} $ und dem metrischen Tensor $ g_{\mu \nu} $.
  5. $ \ T_{\mu\nu} $  ist ein symmetrischer Tensor zweiter Stufe, daher muss dies auch für $ G_{\mu\nu} $ gelten.

Die Feldgleichungen

Aus diesen Forderungen ergeben sich die Feldgleichungen:

$ R_{ \mu \nu} - \frac{1}{2} g_{ \mu \nu} R=\kappa T_{ \mu \nu}= \frac{8 \pi G}{c^4} T_{ \mu \nu} $

Hierbei ist $ G $ die Gravitationskonstante, $ c $ die Lichtgeschwindigkeit, $ R_{\mu \nu} $ der Ricci-Tensor, $ R $ der Krümmungsskalar und $ g_{\mu \nu} $ der metrische Tensor.

Die Feldgleichungen können auch mit umgekehrtem Vorzeichen der Einsteinkonstante definiert werden

$ R_{ \mu \nu} - \frac{1}{2} g_{ \mu \nu} R=-\kappa T_{ \mu \nu}= -\frac{8 \pi G}{c^4} T_{ \mu \nu} $.

Dieses Vorzeichen ist rein von der verwendeten Konvention abhängig und physikalisch nicht bedeutend; beide Konventionen sind weit verbreitet.

Im Energie-Impuls-Tensor wird berücksichtigt, dass Masse und Energie äquivalent sind; d. h., jede Form der Energie induziert schwere Masse. Der Energie-Impuls-Tensor beinhaltet neben der Massen-Energiedichte (Masse bzw. Energie pro Raumvolumen) weitere Energieformen (z. B. den Druck, den ein Strahlungsfeld ausüben kann). Eine Änderung des Energie-Impuls-Tensors, d. h. eine Änderung der durch ihn beschriebenen Energieverteilungen, hat somit eine Änderung der Struktur der Raumzeit in der Umgebung dieser Energieverteilung zur Folge. Die Struktur der Krümmung der Raumzeit (d. h. des Raumes als auch der Zeit) beeinflusst wiederum die dort befindliche Materie, d. h., Energie, Raum und Zeit stehen in direkter Wechselwirkung. Diese Beeinflussung der Materie, die von den Krümmungen von Raum und Zeit ausgehen, ist im Rahmen unserer Erfahrungswelt nichts anderes als die Gravitation.

Die Vakuumfeldgleichungen

Betrachtet man beispielsweise den Außenraum von Sternen, wo sich als Näherung keine Materie aufhält, so wird $ T_{ \mu \nu} = 0 $ gesetzt. Man nennt dann

$ R_{ \mu \nu} - \frac{R}{2} g_{ \mu \nu}= 0 $

die Vakuumfeldgleichungen und ihre Lösungen Vakuumlösungen. Für die Umgebung einer nicht rotierenden und elektrisch neutralen Kugel der Masse M erhält man in Kugelkoordinaten hieraus beispielsweise die äußere Schwarzschild-Lösung, deren Linienelement die Form

$ \mathrm{d}s^2=g_{\mu\nu}\,\mathrm{d}x^\mu\mathrm{d}x^\nu=-c^2 \Bigl( 1-\frac{2GM}{c^2 r} \Bigr)\,\mathrm{d}t^2+\frac{1}{1-\frac{2GM}{c^2 r}}\,\mathrm{d}r^2 +r^2\,\mathrm{d}\theta^2+r^2\sin^2\theta\,\mathrm{d}\phi^2 $

besitzt.

Die Invariante der Theorie, $ \mathrm{d}s, $ verallgemeinert den speziell-relativistischen Begriff der Eigenzeit, unter anderem durch Berücksichtigung der Gravitation des betrachteten Himmelskörpers. Besonderheiten ergeben sich bei Unterschreiten eines kritischen Wertes für den Radius $ r $, nämlich für $ r<2GM/c^2 $ (siehe Schwarzes Loch).

Einstein-Maxwell-Gleichungen

Wird für $ T_{\mu\nu} $ der elektromagnetische Energie-Impuls-Tensor

$ T_{\mu \nu} = \, -\frac{1}{\mu_0} \left(F_{\mu}{}^{\alpha} F_{\alpha\nu} + \frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} g_{ \mu \nu} \right) $

in die Feldgleichungen eingesetzt

$ R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R = \frac{8 \pi G}{c^4\mu_0} \, \left( F_{\mu}{}^{\alpha} F_{\alpha\nu} + \frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} g_{\mu \nu} \right) $

so spricht man von den Einstein-Maxwell-Gleichungen.

Die Kosmologische Konstante

Hauptartikel: Kosmologische Konstante

Es stellte sich heraus, dass die einsteinschen Feldgleichungen noch weiter verallgemeinert werden können. So ist es möglich, einen weiteren additiven Term in den Einsteintensor hinzuzufügen, der aus einer Konstanten $ \Lambda $ und dem metrischen Tensor besteht. Damit ist die Forderung der Divergenzfreiheit noch immer erfüllt und so nehmen die Feldgleichungen die Form

$ R_{ \mu \nu} - \frac{1}{2} g_{ \mu \nu} R+ \Lambda g_{ \mu \nu} = \frac{8 \pi G}{c^4} T_{ \mu \nu} $

an. Hierbei ist $ \Lambda $ die kosmologische Konstante, die von Einstein in die Feldgleichungen eingebaut und so gewählt wurde, dass das Universum statisch wird; dies war die damals sinnvollste Anschauung. Es stellte sich jedoch heraus, dass das so von der Theorie beschriebene Universum instabil ist. Als Edwin Hubble schließlich nachwies, dass das Universum expandiert, verwarf Einstein seine Konstante. Angeblich soll er sie anschließend als die „größte Eselei“ seines Lebens bezeichnet haben; dies wurde ihm jedoch nur von George Gamow nachgesagt.

Trotz Einsteins Irrtum stellt die kosmologische Konstante heute eine wichtige und rätselhafte Größe im Bereich der modernen Kosmologie dar. Lange Zeit wurde ihr Wert für Null gehalten, doch die modernen Methoden der Astronomie haben gezeigt, dass die Konstante einen positiven Wert haben muss, um bestimmte Dinge zu erklären. Es wurden mehrere Modelle für die Entwicklung eines Universums entwickelt, in denen die Konstante eine tragende Rolle spielt. Das bekannteste und einfachste dieser Modelle ist die De-Sitter-Raumzeit.

Ursprünglich war die Konstante zwar als unabhängiger Parameter gedacht, jedoch kann sie im Vakuumfall mit dem Energie-Impuls-Tensor identifiziert werden. Es ist

$ T^{(\mathrm{vac})}_{ \mu \nu} = - \frac{c^4}{8 \pi G}\Lambda g_{ \mu \nu} $,

wobei die Konstante

$ \rho_{(\mathrm{vac})}:=\frac{\Lambda c^4}{8 \pi G} $

als Vakuumenergiedichte bezeichnet wird – sie ist eine dem leeren Raum zugrunde liegende Energie, wobei sich der 'leere' Raum in der Kosmologie als flach erweist (siehe FLRW-Metrik). Wenn eine Vakuumenergie existiert, so existiert auch eine nicht-verschwindende kosmologische Konstante und umgekehrt. Ein wichtiger Punkt ist die Energiedichte der kosmologischen Konstante in einer expandierenden Raumzeit. Die Expansion des Universums lässt (wie oben zu sehen ist) die Energiedichte unbeeinflusst, was auf natürlicher Weise zu einem dominanten Verhalten der kosmologischen Konstanten in 'späten' Zeiten der kosmologischen Entwicklung führt (die Energiedichten von Strahlung und Materie sind in verschiedenen Potenzen invers proportional zum Skalenfaktor der Metrik). Eine mögliche Konsequenz ist der Big Rip.

Literatur

  • Albert Einstein: Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, S.844–847, 25. November 1915
  • Yvonne Choquet-Bruhat: General relativity and the Einstein equations. Oxford Univ. Press, Oxford 2009, ISBN 978-0-19-923072-3.
  • Hans Stephani: Exact solutions of Einstein's field equations. Cambridge Univ. Press, Cambridge 2003, ISBN 0-521-46136-7.
  • Bernd G. Schmidt: Einstein's field equations and their physical implications. Springer, Berlin 2000, ISBN 3-540-67073-4.
  • Fabio Cardone, (et al.): Einstein's Field Equations in R5 and Their Solutions. S.287-301 in: F. Cardone: Deformed spacetime. Springer, Dordrecht 2007, ISBN 978-1-4020-6282-7.

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.