Egil Hylleraas

Egil Hylleraas

Egil Hylleraas (vor 1933)

Egil Andersen Hylleraas, eigentlich Andersen, (* 15. Mai 1898 in Engerdal, Norwegen; † 28. Oktober 1965 in Oslo) war ein norwegischer theoretischer Physiker, der sich mit Atomphysik befasste und für die quantenmechanische Behandlung von Zweielektronenatomen (Helium) bekannt ist.

Leben

Hylleraas war das jüngste von elf Kindern eines Lehrers und Landwirts in einem kleinen Bergdorf im Süden Norwegens (Engerdal). Der Name Hylleraas ist der Name des Bauernhofs, der Vater hieß Ole Andersen. Er studierte ab 1918 an der Universität Oslo (damals Christiania) Mathematik und Physik um Lehrer zu werden und war nach dem Abschluss 1924 ein paar Jahre Gymnasiallehrer in Oslo. Daneben verfasste er Artikel über Doppelbrechung in Kristallen und erhielt ein Stipendium, um 1926 bis 1928 an der Universität Göttingen bei Max Born zu studieren. Bei diesem setzte er erst seine Arbeit über Kristallgitter fort (wofür Born als Spezialist galt[1]), wandte sich aber unter dem Einfluss von Born der im Entstehen begriffenen Quantenmechanik zu. 1931 wurde er Mitglied des Christian Michelsen Instituts in Bergen, 1933 an der Universität Oslo promoviert und 1937 wurde er als Nachfolger von Vilhelm Bjerknes Professor für theoretische Physik in Oslo, was er bis zu seinem Tod an einem Herzanfall blieb.

1947/48 war er am Institute for Advanced Study in Princeton[2] und 1962/63 an der University of Wisconsin–Madison. In den 1950er Jahren war er einer der Repräsentanten Norwegens bei den neu gegründeten Organisationen CERN und Nordita.

1963 fand ein Symposium zu seinen Ehren an der Universität Florida statt.

1932 wurde er Fellow der Royal Society.

Persönlich war er zurückhaltend und bescheiden.

Werk

Hylleraas unternahm 1926 in Göttingen Pionierarbeiten zur Anwendung der Quantenmechanik in Mehrelektronenatomen, über den einfachen Fall des Wasserstoffs hinaus. Auf Anregung von Born untersuchte er die Ionisierungsenergie im Helium. Die alte Bohr-Sommerfeld-Theorie ergab dafür 28 eV, Albrecht Unsöld[3] hatte in erster Ordnung Störungstheorie 1927 20,41 eV, experimentell waren es aber 24,59 eV. Hylleraas fand in seiner ersten Arbeit 24,35 eV und verbesserte den Wert bis 1929 weiter auf 24,47 eV.[4][5][6] Das wurde als Erfolg der neuen Quantenmechanik in der Form der Schrödingerschen Wellenmechanik gewertet. Seine dabei neu entwickelten Variationsmethoden (heute nach ihm benannt ebenso wie die verwendeten Wellenfunktionsansätze)[7] bildeten eine der Grundlagen für quantenmechanische Berechnungen in der Atomphysik und die numerischen Rechnungen, die er dafür mit einer Tischrechenmaschine anwandte (einer Mercedes-Euklid), waren einige der ersten wichtigen Anwendungen von Computerphysik. Das zeichnete den weiteren Weg vor, der vor allem durch die Verfügbarkeit schnellerer Computer gekennzeichnet war.

1930[8][9] bewiesen er und Hans Bethe[10] die Stabilität des negativen Wasserstoffions (also ein Wasserstoffkern mit zwei Elektronen), der 1938 in der Sonnenatmosphäre nachgewiesen wurde (siehe Photosphäre). Er befasste sich auch mit der Quantenmechanik von Molekülen und Gittern, so 1930 von Lithiumhydrid[11], gefolgt von weiteren Arbeiten über zweiatomige Moleküle in den 1930er Jahren. Außerdem behandelte er in den 1930er Jahren Atome wie Bor, Beryllium, Kohlenstoff, häufig in Zusammenarbeit mit dem schwedischen Spektroskopen Bengt Edlén. Er befasste sich auch mit Kernphysik, was aber größtenteils unveröffentlicht blieb.

1939 bis 1943 befasste er sich mit der Theorie der Gezeiten. Nach dem Zweiten Weltkrieg widmete er sich vor allem organisatorischen Aufgaben an der Universität Oslo und der Ausbildung in theoretischer Physik in Norwegen. Er setzte seine Beschäftigung mit dem Heliumatom und dem Wasserstoffion mit seinen Schülern fort und befasste sich mit relativistischer Elektronentheorie, Streutheorie und Spinoren.

Schriften

  • Reminiscences from Early Quantum Mechanics of Two-Electron Atoms, Proceedings of the International Symposium on Atomic and Molecular Quantum Mechanics in Honor of Egil A. Hylleraas, Reviews of Modern Physics, Band 35, 1963, S. 421–431.
  • Mathematical and Theoretical Physics, New York 1970 (norwegisches Original in 4 Bänden, Oslo 1950–1952).
  • Hylleraas Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++ usw., Z. f. Physik, Band 65, 1930, S. 209–225.
  • Hylleraas Die Grundlagen der Quantenmechanik mit Anwendungen auf atomtheoretische Ein- und Mehrelektronenprobleme, Norsk Vid. Akad. Skrift., Mat.-Naturv. Kl., Oslo, 1932, Nr. 6.

Literatur

  • O. K. Gjøtterud, Nachruf mit Bibliographie, Nuclear Physics, Band 89, 1966, S. 1–10.
  • H. Wergeland, Nachruf in Fra Fysikkens Verden, Band 28, 1966, S. 1–10.
  • Hans Bethe, Edwin Salpeter Quantum mechanics of one and two electron atoms, in Siegfried Flügge (Hrsg.) Handbuch der Physik/Encyclopedia of Physics, Band 35, Springer Verlag 1957.

Weblinks

Einzelnachweise

  1. Als größte Einflüsse bezeichnete er später Borns Dynamik der Kristallgitter und Arnold Sommerfelds Atombau und Spektrallinien
  2. Mitgliedsbuch des IAS, 1980
  3. Unsöld, Annalen der Physik, Band 82, 1927, S. 355
  4. Hylleraas Neue Berechnung der Energie des Heliums im Grundstande, sowie des tiefsten Terms von Ortho-Heliium, Zeitschrift für Physik, Band 54, 1929, S. 347–366.
  5. Auch G. W. Kellner wandte 1927 die Ritz-Methode auf das Helium-Problem an, G. Kellner Die Ionisierungsspannung des Heliums nach der Schrödingerschen Theorie, Z. f. Phys., Band 44, 1927, S. 91–109.
  6. Die erste Arbeit von Hylleraas zum Helium ist Über den Grundzustand des Heliumsatoms, Z. f. Physik, Band 48, 1928, S. 469–494.
  7. Er wählte für die Elektronenwellenfunktion einen Potenzreihenansatz in den drei Variablen $ r_1 $, $ r_2 $, $ r_{12} $ (bzw. $ s=r_1 + r_2 $, $ t=r_1 - r_2 $, $ u=r_{12} $), dem Abstand der Elektronen 1 und 2 und dem Betrag des Abstands der Elektronen untereinander, zusätzlich zu dem Vorfaktor $ e^{-\alpha Z \cdot ( r_1 + r_2) } $, mit abgeschirmter Kernladung $ \alpha Z $. Danach wurde das Rayleigh-Ritz-Verfahren angewandt.
  8. Hylleraas Die Elektronenaffinität des Wasserstoffatoms nach der Wellenmechanik, Z. f. Physik, Band 60, 1930, S. 624–630.
  9. Siehe auch Hylleraas The negative hydrogen ion in quantum mechanics and astrophysics, Astrophysica Norvegica, Band 9, 1964, S. 345 Online
  10. Bethe Berechnung der Elektronenaffinität des Wasserstoffs, Z. f. Physik, Band 57, 1929, S. 815–821. Er bezieht sich explizit auf Hylleraas (1929) und verwendet dessen Ansatz.
  11. Hylleraas Wellenmechanische Berechnung der Gitterenergie und der Gitterkonstante des Lithiumhydrids, Zeitschrift für Physik, Band 63, 1930, S. 771–794

Diese Artikel könnten dir auch gefallen



Die letzten News


27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.