Dopplerverbreiterung

Dopplerverbreiterung

Die Doppler-Verbreiterung ist die durch den Doppler-Effekt verursachte Verbreiterung von Spektrallinien. Im optischen Spektralbereich ist sie beobachtbar bzw. störend bei der Spektroskopie kleiner Moleküle (einschließlich Atome) bei hoher Temperatur und geringem Gasdruck, und im Bereich der Gammastrahlung bei Atomkernen.[1][2]

Bei Kernreaktionen tritt eine vergleichbare Doppler-Verbreiterung der Resonanzen auf.[3]

Ursache

Bezogen auf eine bestimmte Spektrallinie sind Teilchen Oszillatoren, die mit einer charakteristischen Frequenz $ f_0 $ schwingen können. Ein Beobachter sieht diese Frequenz, wenn er sich gegenüber dem Teilchen in Ruhe befindet.

Mehrere Teilchen haben aber aufgrund der thermischen Bewegung kein gemeinsames Ruhesystem, sondern bewegen sich relativ zueinander und zum Beobachter. Der sieht aufgrund des Doppler-Effekts verschiedene Schwingungsfrequenzen. Die gaußförmige Maxwell-Boltzmann-Verteilung für die Geschwindigkeit der Teilchen setzt sich um in eine Verteilung für die Frequenzen (bzw. Wellenlängen). Im Schwerpunktsystem der Teilchen beträgt der Mittelwert der Verteilung unverändert $ f_0 $, während die Breite (Standardabweichung) $ \sigma_f $ der Frequenzverteilung von der Temperatur $ T $ und der Teilchenmasse $ m $ abhängt:

$ \sigma_f = \frac{f_0}c \sqrt{\frac{k_B \, T}m} $

mit

Die Linienverbreiterung wird üblicherweise durch die Halbwertsbreite $ \delta f $ der Verteilung beschrieben. Diese berechnet sich für die Gaußverteilung durch:

$ \delta f = 2 \sqrt{2 \ln{2}} \cdot \sigma_f $

Folglich ist die Linienverbreiterung:

$ \Rightarrow \delta f = \frac{f_0}c \sqrt{\frac{8\, k_B \, T \ln{2}}m} $

Betrachtet man anstatt der Frequenz- die Wellenlängenskala, so gilt:

$ \delta \lambda = \frac{\lambda_0}c \sqrt{\frac{8 \, k_B \, T \ln{2}}m} $

Beispiele

Relative Linienbreite in Abhängigkeit von der Temperatur

Das nebenstehende Diagramm zeigt die relative Linienbreite (d. h. das Verhältnis $ \frac{\sigma_{\lambda}}{\lambda_0} = \frac 1 c \sqrt{\frac{k_B \, T}m} $ der Standardabweichung des Doppler-Profils zur zentralen Wellenlänge) in Abhängigkeit von der Temperatur:

  • bei Zimmertemperatur liegt es nur bei etwa 10−6, damit beträgt die Doppler-Breite im Optischen nur etwa 0,001 nm.
  • In den Atmosphären heißer Sterne wird eine relative Breite bis etwa 10−4 erreicht, was im Sichtbaren einer absoluten Breite von etwa 0,1 nm entspricht.

Sauerstoff ist sechzehn Mal so schwer wie Wasserstoff, so dass seine relative Doppler-Breite bei gleicher Temperatur nur ein Viertel von der des Wasserstoffs beträgt.

Tatsächlich sind Spektrallinien oft wesentlich breiter, weil durch Stöße mit anderen Teilchen während eines Absorptions- oder Emissionsvorgangs zusätzlich die Druckverbreiterung auftritt.

Auswirkungen

Da die Doppler-Verbreiterung bei atomaren Übergängen meist um mehrere Größenordnungen größer ist als die natürliche Linienbreite, erschwert sie eine hochauflösende Spektroskopie. Sie verhindert beispielsweise das Auflösen der Hyperfeinstruktur. Es gibt allerdings moderne spektroskopische Verfahren wie die dopplerfreie Sättigungsspektroskopie, welche durch geschickte Anordnungen die Doppler-Verbreiterung ausschalten.

Kern- und Neutronenphysik

Bei Kernreaktionen bewirkt höhere Temperatur des Targetmaterials eine Verbreiterung der Resonanzen in der Anregungsfunktion, denn bei Zusammenstößen mit freien Teilchen hängt die Stoßenergie auch von der thermischen Bewegung der Atome oder Moleküle eines Materials ab. Dadurch wird es mit zunehmender Temperatur wahrscheinlicher, dass die Absorption eines Geschossteilchens gegebener Energie gerade zu einem der möglichen Energieniveaus des betreffenden Compoundkerns führt.

Besonders wichtig ist diese Verbreiterung für Kernreaktoren. Sie führt mit steigender Temperatur zu einem Neutronenverlust durch vermehrten Einfang in Uran-238-Atomkernen. Der Effekt, fachsprachlich oft einfach Dopplereffekt genannt, wird durch den Dopplerkoeffizienten der Reaktivität beschrieben.[3][4] Dieser gibt den Reaktivitätsbeitrag pro Grad Temperaturerhöhung an und ist stets negativ, also für die Reaktorleistung stabilisierend.

Einzelnachweise

  1. G. Lindström, W. Langkau, G. Scobel: Physik kompakt 3. 2. Auflage, Springer 2002, ISBN 978-3-540-43139-8 , Seite 76
  2. B. Welz, M. Sperlimg: Atomabsorptionsspektroskopie. 4. Auflage, Wiley 1999, ISBN 3-527-28305-6, Seite 1-55, 1-59
  3. 3,0 3,1 A. Ziegler, H.-J. Allelein (Hrsg.): Reaktortechnik: Physikalisch-technische Grundlagen. 2. Auflage, Springer-Vieweg, Berlin, Heidelberg 2013, ISBN 978-3-642-33845-8, Seite 87
  4. G. Kessler: Sustainable and Safe Nuclear Fission Energy. Springer, 2012, ISBN 978-3-642-11989-7, Seite 131 ff

Diese Artikel könnten dir auch gefallen



Die letzten News


11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.