Dipol

Dipol

Vektor eines Dipols, der aus zwei gegensätzlichen Ladungen beliebiger Art besteht.

Ein Dipol (griechisch: Präfix di-: zwei-, πόλος (pólos) = „Achse“) ist die physikalische Anordnung zweier zueinander entgegengesetzter allgemeiner Ladungen, bspw. elektrischer Ladungen oder beim magnetischen Dipol Austrittsflächen des magnetischen Felds aus einem Körper. Da sich die entgegengesetzten Ladungen gegenseitig kompensieren, trägt der Dipol insgesamt keine Ladung. Der Dipol wird charakterisiert durch den Abstand $ \textstyle \vec p $ und den Betrag der entgegengesetzten Ladungen $ \textstyle Q $. Das Produkt aus diesen beiden Größen ist das Dipolmoment $ \textstyle \vec{p_Q} := \vec p \cdot Q $ in der Multipolentwicklung seines Fernfelds. In dieser Betrachtung lässt sich der tatsächliche Dipol gleichwertig durch einen ausdehnungslosen Dipol mit gleichem Dipolmoment ersetzen, der in seinem Zentrum angesiedelt ist (sog. „Dipol-Limes“) $ \textstyle \textstyle \vec{p_Q} := \lim_{\left\vert\vec p \right\vert \to 0} \left\vert\vec p \right\vert \cdot \frac {\vec{p_Q}}{\left\vert\vec p \right\vert} $.

Ein Dipol kann beispielsweise aus elektrischen Ladungen erzeugt werden, kann aber auch ohne räumlich trennbare Ladungen existieren wie beim magnetischen Dipol (es gibt nur fiktive, keine realen magnetischen Ladungen!).

Außer im Elektromagnetismus treten Dipole noch in verschiedenen anderen Bereichen auf wie Akustik oder Fluiddynamik. Charakteristisch ist immer die Richtungsabhängigkeit und die Abnahme des erzeugten Feldes mit $ \textstyle \frac{1}{r^3} $ bei Abständen $ \textstyle r \gg \left\vert\vec p \right\vert $.

Der Begriff des Dipols ist in seiner Bedeutung nicht identisch mit dem des Zweipols, welcher eine bestimmte Gruppe elektrischer Schaltungen beschreibt.

Vorkommen

Elektrische Dipole

Elektrische Dipole erfordern die Trennung von Ladungen und treten daher auf makroskopischer Skala nur selten auf. Auf mikroskopischer Skala sind dagegen elektrische Dipole sehr häufig. Beispielsweise werden sie von asymmetrischen Molekülen wie z. B. dem Wassermolekül erzeugt.

Auch in biologischen Muskel- und Nervenfasern entstehen elektrische Dipolmomente durch aufgebaute Spannungen, die beispielsweise beim Elektrokardiogramm gemessen werden können.

Magnetische Dipole

Hauptartikel: Magnetischer Dipol
Magnetisches Dipolfeld der Erde

Wegen des Fehlens wirklicher magnetischer Monopole gehen magnetische Felder immer von magnetischen Dipolen und deren Überlagerungen aus. Daher sind im Magnetismus auch makroskopisch gesehen offensichtliche Dipolfelder sehr häufig. Ein langer Stabmagnet lässt sich in guter Näherung als magnetischer Dipol beschreiben. Auch das Magnetfeld der Erde ähnelt im Außenbereich einem Dipolfeld mit Dipolachse von Nord nach Süd.

Ein magnetischer Dipol entsteht generell aus einer stromumflossenen Fläche oder ist mit dem Spin von Teilchen verbunden.

Als Dipolmagnet werden auch größere Konfigurationen bezeichnet, deren Feld kein reines Dipolfeld, aber diesem ähnlich ist, im Gegensatz zu Quadrupolmagneten und noch höheren Ordnungen der Multipolentwicklung.

Zeitlich variable Dipole

Ein statisches Dipolfeld verringert sich ~ 1/r³ (r: Entfernung). Für große Entfernungen nimmt die umschlossene Oberfläche mit ~r² zu, das Produkt geht aber mit ~1/r gegen Null. In großem Abstand verschwindet ein statisches Dipolfeld. Das folgt auch unmittelbar aus der Anschauung: aus großer Entfernung sind die Pole räumlich nicht mehr zu unterscheiden, ihre Feldbeiträge heben sich auf.

Zeitlich veränderliche Dipole verhalten sich grundsätzlich anders. Erst sie ermöglichen es, dass weit entfernte Sterne am Himmel zu sehen sind und die Sonne die Erde mit Strahlungsenergie versorgt. Ein mathematisches Modell eines einfachen variablen Dipols ist der Hertzsche Dipol. Systeme mit Ausdehnungen in der Größenordnung der Wellenlänge heißen Dipolantennen.

Physikalische Beschreibung

Jeder Dipol ist durch sein Dipolmoment charakterisiert, eine vektorielle Größe, welche Richtung und Betrag besitzt. Dabei steht $ \vec p $ für ein elektrisches und im Folgenden für ein beliebiges Dipolmoment, wohingegen ein magnetisches Dipolmoment in der Regel mit $ \vec m $ bezeichnet wird.

Physikalischer Dipol

Ein physikalischer Dipol besteht aus zwei gegensätzlichen Ladungen $ \pm q $[1] in hinreichend kurzem Abstand d. Das Dipolmoment ist definiert als

$ \vec p = q \cdot \vec d \, . $

Das Feld in großer Entfernung, d.h. für $ |r| \gg d $, hängt dann nur noch von $ \vec p $ ab und nicht mehr von q und d einzeln. Je größer der Abstand, desto mehr nähert sich das Feld dem eines Punktdipols an. Bei kleinen Abständen weicht das Feld davon ab, was sich auch durch nichtverschwindende höhere Multipolmomente zeigt.

Punktdipol

Feldlinien eines Punktdipols

Der Punktdipol entsteht, wenn ein ausgedehnter Dipol ohne Monopolmoment auf einen Punkt verkleinert wird, ohne dabei das Dipolmoment zu ändern. Das entspricht dem Grenzfall bei großen Abständen und führt zur Ladungsverteilung

$ \rho(\vec r) = -(\vec p \cdot \vec \nabla) \, \delta(\vec r) $

unter Verwendung

  • des Nabla-Operators $ \vec \nabla $
  • der Delta-Funktion $ \delta(\vec r). $

Der Punktdipol erzeugt das Feldpotential

$ \phi(\vec{r}) = \frac {1}{4 \pi \varepsilon_0} \frac {\vec p \cdot \vec r}{r^3} = \frac {1}{4 \pi \varepsilon_0} \frac {p \cdot \cos (\theta)}{r^2} $

unter Verwendung

und das Vektorfeld

$ \vec E(\vec{r}) = \frac{1}{4 \pi \varepsilon_0} \left( 3 \, \frac{\vec p \cdot \vec r}{r^5} \, \vec r - \frac{1}{r^3} \, \vec p \right) = \frac{1}{4 \pi \varepsilon_0} \frac{p}{r^3} \left( 2 \cos(\theta) \cdot \hat{r} + \sin(\theta)\cdot \hat{\theta} \right) $

unter Verwendung

  • der Einheitsvektoren $ \hat{v}. $

Dipol in der Multipolentwicklung

Felder, die aus einer räumlich begrenzten Ladungsverteilung entstehen, lassen sich durch die Multipolentwicklung nach verschiedenen Anteilen aufspalten, die bei großen Abständen verschieden schnell abfallen. Bei großen Abständen dominiert dann immer der erste nichtverschwindende Term. Der Dipolterm als zweiter Term in der Entwicklung kommt daher besonders zum Tragen, wenn der Monopolterm (Gesamtladung) verschwindet. Eine beliebige Ladungsverteilung besitzt dann das Dipolmoment

$ \vec p = \sum_i q_i \cdot \vec r_i. $

Falls der Monopolterm allerdings nicht verschwindet, so lässt sich der Wert des Dipolmoments durch Verschiebung des Koordinatenursprungs verändern und ist somit nicht eindeutig definiert.

Der nächsthöhere Term ist das Quadrupolmoment, dessen Feld mit $ 1/{r^4} $ abnimmt.

Dipol im äußeren Feld

Ein Dipol in einem äußeren Feld, das nicht von ihm selbst erzeugt wird, - (elektrisches Feld $ \vec E $ bzw. magnetisches Feld $ \vec B $) - besitzt die potentielle Energie:

$ V = -\vec p \cdot \vec E $ bzw.
$ V = -\vec m \cdot \vec B. $

In einem inhomogenen äußeren Feld wirkt auf einen Dipol die Kraft:

$ \vec F = \vec \nabla (\vec p \cdot\vec E) $ bzw.
$ \vec F = (\vec \nabla \otimes \vec B) \vec m. $

Diese beiden Ausdrücke sind über die Graßmann-Identität mathematisch identisch, wenn das Magnetfeld rotationsfrei ist.

Manchmal benutzt man deshalb auch eine leicht unterschiedliche, äquivalente Konvention für die Definition des magnetischen Moments, nämlich

$ \vec m_H := \mu_0 \, \vec m $

mit der magnetischen Feldkonstante $ \mu_0. $

Dann schreibt man von vornherein auch im magnetischen Fall

$ \vec F = (\vec m_H \cdot \vec \nabla) \, \vec H $[2]

mit der magnetischen Feldstärke $ \vec H = \frac{1}{\mu} \vec B. $

Zeigt ein Dipol nicht in Richtung eines äußeren Feldes, so wirkt auf ihn ein Drehmoment:

$ \vec M = \vec p \times \vec E $ bzw.
$ \vec M = \vec m \times \vec B \Leftrightarrow \vec M = \vec m_H \times \vec H. $

Befinden sich zwei Dipole im Feld des jeweils anderen, so entstehen Dipol-Dipol-Kräfte, die entsprechend dem Feldgradienten mit $ 1/{r^4} $ abnehmen.

Einzelnachweise und Fußnoten

  1. An dieser Stelle wird absichtlich nicht der Großbuchstabe Q, sondern der Kleinbuchstabe q benutzt, um zu betonen, dass hier keine explizite Limesbildung erfolgt.
  2. Dies hat u.a. deshalb Vorteile, weil die im Festköpermagnetismus wichtige Größe der Magnetisierung eines Permanentmagneten dieselbe physikalische Dimension wie $ \vec H $ hat (und nicht wie $ \vec B $).

Ähnliche Artikel wie "Dipol" auf cosmos-indirekt.de

28.02.2020

Dem Rätsel der Materie auf der Spur
Forschende am Paul Scherrer Institut PSI haben eine Eigenschaft des Neutrons so genau wie noch nie vermessen.
23.04.2019

Quantenmaterie fest und supraflüssig zugleich
Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet.
17.01.2019
Elektrodynamik - Quantenoptik
Wie Moleküle im Laserfeld wippen
Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger Dipol induziert.
23.11.2018
Quantenphysik
Ultrakalter „Quantencocktail“
Die experimentelle Untersuchung von ultrakalter Quantenmaterie ermöglicht die Erforschung von quantenmechanischen Phänomenen, die sonst kaum zugänglich sind.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.