Diffusor

Diffusor

Dieser Artikel behandelt das Bauteil in der Strömungslehre – zu anderen Bedeutungen siehe Diffusion (Begriffsklärung) #Diffusor.
Zwei Austrittsdiffusoren eines Wetterschachtes mit Grubenlüftern

Ein Diffusor ist ein Bauteil im Maschinen-, Elektrizitätswerks-, Ventilator-, Fahrzeug-, Flugzeug- und Schiffbau, das Gas-/Flüssigkeitsströmungen verlangsamt und den Gas-/Flüssigkeitsdruck erhöht. Es stellt im Prinzip die Umkehrung einer Düse dar. Er dient weiterhin zur „Rückgewinnung“ von kinetischer Energie in der Rohrhydraulik. So werden Diffusoren technisch genutzt, um kinetische Energie in Druckenergie zu wandeln. Dazu muss die Strömung verzögert werden. Man erreicht dies in der Regel durch eine stetige oder unstetige Erweiterung des Strömungsquerschnitts, die geometrisch auf verschiedene Weisen realisiert werden kann.

Technische Beschreibung

Datei:Diffusor-düse.png
Unterschied zwischen Über- und Unterschall

Ein Diffusor stellt im Unterschallbereich immer eine Vergrößerung des Durchflussquerschnittes in Fließrichtung des strömenden Mediums dar.

In der Aerodynamik wird der Diffusor zum Beispiel bei Überschallflugzeugen dazu verwendet, die Luft im Triebwerkseinlauf einer Turbine auf Unterschallgeschwindigkeit abzubremsen, da die Luft die Schaufeln der Rotoren und Statoren nur im Unterschallbereich umströmen darf. Denn kommt es zu Überschallgeschwindigkeiten an den Schaufeln der Rotoren und Statoren in einem Jetantrieb, reißt die Strömung ab, die Brennkammer erstickt, der Antrieb fällt aus. Außerdem laufen Schockwellen durch das Fließmedium und die Rotor-/Statorflügel, welche das Triebwerk zerstören können.

In der sich in Fließrichtung verjüngenden Düse, die dem Triebwerk folgt, beschleunigt die Luft dann wieder auf Überschall-Geschwindigkeit.

Befindet sich das Fließmedium selbst in Überschallgeschwindigkeit und soll es auch in Überschallgeschwindigkeit verbleiben (z. B. im Lufteinlass eines Pulsertriebwerkes), dann muss sich die Düse in Fließrichtung weiten, nicht verjüngen. Im Artikel Düse wird dieses paradoxe Phänomen erklärt.

In der Hydrodynamik zur Beeinflussung des Phänomens der Kavitation angewandt, sowie in der Aerodynamik im Bereich des Überschalls, ist der Diffusor ein sehr komplex zu berechnendes Bauteil.

Bei Diffusoren mit einem Öffnungswinkel von $ \alpha \geq 8\,^{\circ} $ (überkritischer Diffusor) entsteht eine Dissipation durch Ablösen der Strömung von der Diffusorwand, dadurch kommt es zu starken Verwirbelungen in den Übergangsgebieten zu den Toträumen. Bei einer plötzlichen Querschnittserweiterung ($ \alpha = 90\,^{\circ} $) spricht man auch von einem „Carnotschen Stoßverlust“, den entsprechenden Diffusor nennt man Sprungdiffusor. In einem solchen Diffusor kommt die Strömung nach einer Distanz von etwa dem Acht- bis Zehnfachen des großen Durchmessers wieder zum Anliegen.

Die Qualität eines Diffusors wird mit dem „Diffusorwirkungsgrad“ $ \eta_D $ oder der „Druckrückgewinnziffer“ beschrieben.

Berechnung für inkompressible Fluide (Mach < 0.3)

Relativ überschaubar ist die Wirkung eines Diffusors jedoch im Fall von nicht-turbulenten und nicht viskosen Strömungen (das heißt, es kommt nicht aufgrund von plötzlichen Querschnittsänderungen oder Ähnlichem zu Wirbeln und die Reibungsverluste des Mediums an den Wänden kann vernachlässigt werden). Dann gilt die vereinfachte Bernoulli-Gleichung

$ p+\frac{1}{2}\rho v^2= \text{konstant} $.

Dabei ist $ p $ der sogenannte statische Druck, der auf die Außenwände des Diffusors wirkt, $ \rho $ die Dichte des Mediums und $ v $ seine Fließgeschwindigkeit. (Anmerkung: Die Bernoulli-Gleichung ist dahingehend vereinfacht, dass Höhenunterschiede nicht berücksichtigt sind.) Wie ersichtlich ist, muss der statische Druck $ p $ abnehmen, wenn sich die Fließgeschwindigkeit $ v $ erhöht.

Da bei einem Rohr mit veränderlichem Querschnitt an jeder Stelle das gleiche Volumen pro Zeiteinheit durchströmen muss, ist ersichtlich, dass sich die Strömungsgeschwindigkeit $ v_1 $ bei einem Querschnitt $ A_1 $ zu der Strömungsgeschwindigkeit $ v_2 $ bei dem Querschnitt $ A_2 $ umgekehrt proportional zu dem Verhältnis des Querschnitte verhält, es also gelten muss:

$ \frac{v_1}{v_2}=\frac{A_2}{A_1} $ bzw. $ v_2=\frac{A_1}{A_2} v_1 $

Außerdem gilt wegen der obenstehenden (vereinfachten) Bernoulli-Gleichung:

$ p_1+\frac{1}{2}\rho v_1^2 = \text{konstant} = p_2+\frac{1}{2}\rho v_2^2 $

Beides zusammen ergibt:

$ p_1+\frac{1}{2}\rho v_1^2=p_2+\frac{1}{2}\rho \left(\frac{A_1}{A_2} v_1 \right)^2 $

bzw. umgeformt:

$ p_2-p_1 = \frac{1}{2}\rho v_1^2 \left(1-\left(\frac{A_1}{A_2}\right)^2\right) $

D. h. mit wachsendem Querschnitt (Diffusor: $ A_2>A_1 $) steigt der Druck (und sinkt die Strömungsgeschwindigkeit) und mit sinkendem Querschnitt (Düse: $ A_2<A_1 $) sinkt der Druck (und steigt die Strömungsgeschwindigkeit).

Bei sehr engen Querschnitten oder sehr zähflüssigen Medien müssen zusätzlich die Reibungsverluste berücksichtigt werden, ebenso wie bei sich plötzlich ändernden Querschnitten die auftretenden Turbulenzen berücksichtigt werden müssen (siehe nächster Abschnitt).

Mathematische Beschreibung

Diffusor (schematisch)

Bei einer plötzlichen Querschnittsänderung gilt für die, in der Strömungslehre definierte, Verlustziffer $ \xi $:[1]

$ \xi_D=\left(1-\frac{A_1}{A_2}\right)^2 $

Mit der Verlustziffer und dem erweiterten Bernoullisatz der Rohrhydraulik (Berücksichtigung von Dissipation) folgt:

Energiesatz: $ \Delta p=p_1-p_2+\frac{\rho}{2}(w_1^2-w_2^2)=\xi_D\frac{\rho}{2}w_1^2 $

Massenerhaltungssatz: $ w_1=\frac{A_2}{A_1}w_2 $ für $ \rho = \text{konstant} $

$ p_1-p_2=\frac{\rho}{2}\left(\xi_D w_1^2-(w_1^2-w_2^2)\right)=\frac{\rho}{2}w_1^2\cdot \left(\xi_D-1+\left(\frac{A_1}{A_2}\right)^2 \right) $

Technische Anwendung

Diffusoren werden bei schnellfliegenden, insbesondere überschallschnellen Flugzeugen verwendet, um im unmittelbaren Ansaugbereich der Triebwerke einen definierten Gasdruck zu erzielen. Um dabei die optimalen Verhältnisse einstellen zu können, wird der Diffusor meist beweglich ausgelegt. Flugzeuge mit besonders großem Geschwindigkeitsbereich, oder bei denen es auf hohe Reichweite ankommt, haben komplexe Diffusoren mit verstellbaren Klappen und mehrfach veränderlichen Querschnitten.

Diffusoren finden Anwendung im Motorsport, häufig auch bei Supersportwagen und gelegentlich bei Sportwagen. Hierbei wird Unterdruck unter dem Wagenboden erzeugt, der das Fahrzeug an den Boden presst und damit höhere Kurvengeschwindigkeiten zulässt und auch das Fahrverhalten bei hohen Geschwindigkeiten verbessert. Der Diffusor hat dabei die Aufgabe, den Unterdruck unter dem Fahrzeug wieder auf den hinter dem Fahrzeug herrschenden Umgebungsdruck zu erhöhen. In vielen Fällen handelt es sich bei einem solchen Diffusor um einen bodennahen Flügel.

In der Hydrodynamik findet man den Diffusor z. B. in Pumpen und Wasserstrahl-/Strahltriebwerken sowie bei Ventilatoren in der Aerodynamik.

Ebenso finden sich Diffusoren im Bereich der Aquaristik. Dort dienen sie dem Zweck, für das Leben und Wachstum der Fauna und Flora im Aquarium zusätzlich benötigte Gase wie Kohlendioxid oder Sauerstoff in das Wasser einzubringen. Dies geschieht durch den „Saugrohreffekt“, indem durch das Fließwasser innerhalb der Ausströmleitung mittels eines Frischluft- oder einer Gaszuleitung durch den Unterdruck angesaugt, mit dem Wasser vermischt und anschließend in das Becken geleitet wird. Insbesondere dienen diese Diffusoren während der Verwendung von Algenbekämpfungsmitteln, Medikamenten und/oder bei einem Missverhältnis zwischen Pflanzen- und Fischbesatz der zusätzlichen und ausgleichenden Belüftung des künstlichen Lebensraumes. Strittig ist, ob ein Diffusor darüber hinaus für normale Beckengrößen sinnvoll ist.

Mit Diffusoren kann die Ausströmmenge aus einem Gefäß erhöht werden, man spricht vom Saugrohreffekt. Dieser war offenbar schon im antiken Rom bekannt, denn dort war es nach Sextus Iulius Frontinus verboten, ein Rohr mit zunehmendem Durchmesser direkt an ein Mundstück der Wasserleitung anzuschließen.[2]

Im Bereich kleinerer Windkraftanlagen gibt es immer wieder Versuche, mit Hilfe von Diffusoren ihre Effektivität zu steigern.

Weiterführende Literatur

  • Willi Bohl: Technische Strömungslehre. Vogelverlag, Würzburg 1998, ISBN 3-8023-1740-8.
  • Heinrich Dubbel (Begr.): Taschenbuch für den Maschinenbau. Springerverlag, Berlin u.a. 2005, ISBN 3-540-22142-5.

Weblinks

 Wiktionary: Diffusor – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Peter Hakenesch: Strömung von Fluiden. Kapitel 4, Teil 3. In: Folien zur Vorlesung Fluidmechanik. S. 45, abgerufen am 4. Februar 2016.
  2. Herbert Sprenger: Experimentelle Untersuchungen an geraden und gekrümmten Diffusoren. Von der Eidgenössischen Technischen Hochschule in Zürich zur Erlangung der Würde eines Doktors der technischen Wissenschaften genehmigte Promotionsarbeit. In: Mitteilungen aus dem Institut für Aerodynamik an der Eidgenössischen Technischen Hochschule in Zürich. Nr. 27. Leemann, Zürich, 2. Geschichtlicher Rückblick, S. 8 f. (ethz.ch [PDF; abgerufen am 18. Januar 2015]).

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.