Dekohärenz

Dekohärenz

Dekohärenz ist ein Phänomen der Quantenphysik, das zur unvollständigen oder vollständigen Unterdrückung der Kohärenzeigenschaften quantenmechanischer Zustände führt. Dekohärenzeffekte ergeben sich, wenn ein bislang abgeschlossenes System mit seiner Umgebung in Wechselwirkung tritt. Dadurch werden sowohl der Zustand der Umgebung als auch der Zustand des Systems irreversibel verändert. Das Dekohärenzkonzept wurde ca. 1970 vom deutschen Physiker Dieter Zeh eingeführt.

Die Konzepte der Dekohärenz sind heute bei vielen gängigen Interpretationen der Quantenmechanik ein wichtiges Hilfsmittel zur Klärung der Frage, wie die klassischen Phänomene makroskopischer Quantensysteme gedeutet werden können.[1] Sie sind jedoch unvereinbar mit der Kopenhagener Interpretation, welche Messgeräte als „klassische“, nicht quantenmechanisch beschreibbare Systeme definiert.[1]

Weiterhin ist die Dekohärenz ein Hauptproblem bei der Konstruktion von Quantencomputern, bei denen eine quantenmechanische Überlagerung möglichst vieler Zustände über einen hinreichend langen Zeitraum ungestört aufrechterhalten werden soll.

Grundlegende Konzepte

Problemstellung

Falls die Quantenmechanik eine fundamentale Theorie darstellt, muss – da die Gesetze der Quantenmechanik grundsätzlich unabhängig von der Größe des betrachteten Systems formuliert sind – der Übergang der physikalischen Eigenschaften mikroskopischer Systeme zu den Eigenschaften makroskopischer Systeme quantenmechanisch beschreibbar sein. Quantenphänomene wie das Doppelspaltexperiment werfen jedoch die Frage auf, wie das „klassische“ Verhalten makroskopischer Systeme im Rahmen der Quantenmechanik erklärt werden kann. Insbesondere ist es keineswegs unmittelbar ersichtlich, welche physikalische Bedeutung einem quantenmechanischen Superpositionszustand bei Anwendung auf ein makroskopisches System zukommen soll. So stellte Albert Einstein 1954 in seiner Korrespondenz mit Max Born die Frage, wie sich im Rahmen der Quantenmechanik die Lokalisierung makroskopischer Gegenstände erklären lässt. Dabei wies er darauf hin, dass die „Kleinheit“ quantenmechanischer Effekte bei makroskopischen Massen zur Erklärung der Lokalisierung nicht ausreicht:

$ \psi_1 $ und $ \psi_2 $ seien zwei Lösungen derselben Schrödingergleichung. Dann ist $ \psi=\psi_1+\psi_2 $ ebenfalls eine Lösung der Schrödingergleichung mit gleichem Anspruch darauf, einen möglichen Realzustand zu beschreiben. Wenn das System ein Makro-System ist, und wenn $ \psi_1 $ und $ \psi_2 $ „eng“ sind in Bezug auf die Makro-Koordinaten, so ist dies in der weitaus überwiegenden Zahl der möglichen Fälle für $ \psi $ nicht mehr der Fall. Enge bezüglich der Makro-Koordinaten ist eine Forderung, die nicht nur unabhängig ist von den Prinzipien der Quantenmechanik, sondern auch unvereinbar mit diesen Prinzipien.“[2]

Ein anderes Beispiel für die (scheinbaren) Paradoxien bei der Anwendung quantenmechanischer Konzepte auf makroskopische Systeme ist das von Erwin Schrödinger erdachte, heute als „Schrödingers Katze“ bekannte Gedankenexperiment.

Einfluss der Umgebung

Erst ab ca. 1970 (Arbeiten von Dieter Zeh) setzte sich – ausgehend von theoretischen und experimentellen Untersuchungen des Messprozesses – allmählich die Erkenntnis durch, dass die o. g. Überlegungen und Gedankenexperimente zu makroskopischen Zuständen insofern unrealistisch sind, als sie deren unvermeidliche Wechselwirkungen mit der Umgebung ignorieren. So stellte sich heraus, dass Superpositionseffekte wie die oben erläuterte Interferenz am Doppelspalt äußerst empfindlich auf jeglichen Einfluss aus der Umgebung reagieren: Stöße mit Gasmolekülen oder Photonen, aber auch die Aussendung oder Absorption von Strahlung beeinträchtigen oder zerstören die feste Phasenbeziehung zwischen den beteiligten Einzelzuständen $ |\phi_n^\text{System}\rangle $ des betrachteten Systems, die für das Auftreten von Interferenzeffekten entscheidend ist.

In der Terminologie der Quantenmechanik lässt sich dieses als Dekohärenz bezeichnete Phänomen auf die Wechselwirkung zwischen den Systemzuständen und den Streuteilchen zurückführen. Diese kann durch eine Verschränkung der Einzelzustände $ |\phi_n^\text{System}\rangle $ mit den Zuständen $ |\phi_m^\text{Streuteilchen}\rangle $ der Umgebung beschrieben werden. Als Folge dieser Wechselwirkung bleiben die Phasenbeziehungen zwischen den beteiligten Zuständen nur bei Betrachtung des Gesamtsystems (System + Umgebung) wohldefiniert. Bei isolierter Betrachtung der Systemzustände $ |\phi_n^\text{System}\rangle $ ergeben sich dagegen rein statistische, d. h. „klassische“ Verteilungen dieser Zustände.[3]

Typische Dekohärenzzeiten

Dekohärenzzeiten in Sekunden[3]
Umgebungseinfluss Freies Elektron Staubteilchen 10 µm Bowlingkugel
300 K, Normaldruck 10−12 10−18 10−26
300 K, Ultrahochvakuum (Labor) 10 10−4 10−12
    mit Sonnenlicht (auf der Erde) 10−9 10−10 10−18
    mit Wärmestrahlung (300 K) 10−7 10−12 10−20
    mit Kosmischer Hintergrundstrahlung (2,73 K) 10−9 [4] 10−7 10−18

Eine Vorstellung von der Effizienz dieses Phänomens gibt Tabelle 1, in der typische Größenordnungen der Dekohärenzzeiten (d. h. der Zeitspannen, innerhalb derer die Kohärenz verloren geht) für verschiedene Objekte und Umgebungseinflüsse aufgeführt sind. Offensichtlich zerfallen die Überlagerungszustände makroskopischer Objekte durch den praktisch nicht vermeidbaren Einfluss der Umgebung innerhalb kürzester Zeit in ein klassisches Ensemble unkorrelierter Einzelzustände (bereits das 10 µm-Staubteilchen muss in diesem Sinne als makroskopisch bezeichnet werden).

Superselektion bei Messungen

Bei den obigen Ausführungen wurde implizit angenommen, dass makroskopische Systeme spätestens nach Ablauf der Dekohärenzprozesse Zustände einnehmen, welche die vertrauten „klassischen“ Eigenschaften aufweisen. Jedoch ist nicht unmittelbar klar, welche der vielen denkbaren Basissysteme die bevorzugte Basis makroskopischer Systeme darstellen. Warum scheinen z. B. bei makroskopischen Systemen in der Regel lokalisierte Ortszustände eine bevorzugte Rolle zu spielen, während mikroskopische Systeme häufig in delokalisierten Zuständen (z. B. Energie-Eigenzuständen) vorgefunden werden?

Auch diese Fragestellung kann auf den Einfluss der Umgebung auf das betrachtete System zurückgeführt werden. Demnach definiert nur eine „robuste“ Basis, die nicht unmittelbar durch Dekohärenz-Mechanismen zerstört wird, die tatsächlich realisierbaren Observablen (verschiedene konkrete Beispiele inkl. einer Begründung des bevorzugten Auftretens räumlich lokalisierter Zustände finden sich z. B. bei Erich Joos [3] und Maximilian Schlosshauer [1]). Diese Bevorzugung bestimmter makroskopischer Zustände wird als Superselektion oder einselection (für environmentally-induced superselection) bezeichnet.

Dekohärenz und Messproblem

In der Literatur findet sich häufig die Aussage, Dekohärenz und Superselektion stellten eine Lösung für das Messproblem dar, eine der grundlegenden ungeklärten Fragen der Quantenmechanik. Diese Aussage ist jedoch sehr umstritten.[1]

Wenn davon die Rede ist, dass die Dekohärenz „klassische“ Eigenschaften hervorruft, dann bedeutet dies, dass das Quantensystem annähernd („for all practical purposes“) keine Interferenz und keine Überlagerungszustände mehr zeigt. Messungen an dekohärenten Systemen zeigen eine klassische statistische Verteilung der Messwerte; damit verschwinden auch Widersprüche zur klassischen Physik wie das Einstein-Podolsky-Rosen-Paradoxon.

Die Dekohärenztheorie kann jedoch keine einzelnen Messungen erklären, sondern macht nur statistische Aussagen über Ensembles aus mehreren Messvorgängen. Um zu erklären, warum bei einer Einzelmessung nur ein einzelnes, bestimmtes Ergebnis wahrgenommen wird, ist nach wie vor eine weitergehende Interpretation nötig, wie sie zum Beispiel im Rahmen der Viele-Welten-Interpretation versucht wird. Auch die Dynamischer-Kollaps-Theorien sind gut mit der Dekohärenztheorie vereinbar.[1]

Literatur

  • Mario Castagnino, Sebastian Fortin, Roberto Laura and Olimpia Lombardi, A general theoretical framework for decoherence in open and closed systems, Classical and Quantum Gravity, 25, pp. 154002–154013, (2008).
  • Bertrand Duplantier: Quantum decoherence. Birkhäuser, Basel 2007, ISBN 3-7643-7807-7
  • Vladimir M. Akulin: Decoherence, entanglement and information protection in complex quantum systems. Springer, Dordrecht 2005, ISBN 1-4020-3282-X.
  • Maximilian A. Schlosshauer: Decoherence and the quantum-to-classical transition. Springer, Berlin 2008, ISBN 3-540-35773-4.
  • Erich Joos: Elements of Environmental Decoherence, in: D. Giulini u.a. (Hrsg.): Decoherence and the Appearance of a Classical World in Quantum Theory, Springer 2003, arxiv:quant-ph/9908008
  • Dieter Zeh: Decoherence: Basic Concepts and Their Interpretation, in: P. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu (Hrsg.): Bielefeld conference on Decoherence: Theoretical, Experimental, and Conceptual Problems, Springer 1999, arxiv:quant-ph/9506020

Weblinks

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 Schlosshauer, Maximilian: "Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics", Reviews of Modern Physics 76(2004), 1267–1305. arxiv:quant-ph/0312059v4.
  2. A. Einstein, M. Born: Briefwechsel 1916-1955, Langen/Müller 2005, ISBN 3-7844-2997-1
  3. 3,0 3,1 3,2 E. Joos et al.: Decoherence and the Appearance of a Classical World in Quantum Theory, Springer 2003, ISBN 3-540-00390-8
  4. Horst Völz: Grundlagen und Inhalte der vier Varianten von Information: Wie die Information entstand und welche Arten es gibt. Hrsg.: Springer-Verlag. Springer-Verlag, Berlin, ISBN 978-3-658-06406-8, S. 143.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.