Datei:Impact movie.ogv

Datei:Impact movie.ogv

Impact_movie.ogv(Ogg-Theora-Videodatei, Länge: 43 s, 320×240 Pixel, 292 kbps insgesamt)

Diese Datei stammt aus Wikimedia Commons und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.

This is Video (Ogg Theora) This is Video (Ogg Theora)

Beschreibung

High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc).

A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.

English: High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc). A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.
Quelle http://deepimpact.jpl.nasa.gov/gallery/mpeg4.html
Urheber NASA Ames Resarch Center (NASA-ARC) Vertical Gun Range, NASA Ames Research Center; Peter H. Schultz, Brown University
Andere Versionen See Image:Impact still.jpg for a single still frame, and Image:Impact sequence.jpg for a sequence of still frames from similar experiments.
Multimediadatei des Tages Dieses Medium war am 20. Januar 2011 Multimediadatei des Tages. Es hatte die folgende Beschreibung:
English: High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc). A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.
andere Sprachen
English: High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc). A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.


Public domain Diese Datei ist gemeinfrei (public domain), da sie von der NASA erstellt worden ist. Die NASA-Urheberrechtsrichtlinie besagt, dass „NASA-Material nicht durch Urheberrecht geschützt ist, wenn es nicht anders angegeben ist“. (NASA-Urheberrechtsrichtlinie-Seite oder JPL Image Use Policy).
Warnung:

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell20:19, 26. Jun. 200643 s, 320 × 240 (1,49 MB)wikimediacommons>Vesta~commonswikiThis is Video (Ogg Theora) '''This is Video (Ogg Theora)''' {{Information |Description=High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc).

Die folgende Seite verwendet diese Datei:

Metadaten