Borexino

Borexino

Borexino ist ein Experiment der Teilchenphysik, mit dem aus der Sonne stammende Neutrinos niedriger Energie erforscht werden. Die Bezeichnung „Borexino“ ist das italienische Diminutiv von BOREX (Boron solar neutrino experiment).[1] Das Experiment befindet sich in den Laboratori Nazionali del Gran Sasso und repräsentiert eine internationale Gruppe mit Forschern aus Italien, den Vereinigten Staaten, Deutschland, Frankreich und Russland.[2] Das Experiment wird von verschiedenen nationalen Institutionen wie INFN und NSF finanziert.

Das Borexino-Experiment im September 2015

Der Detektor ist ein Flüssigszintillator, der sich in einer Sphäre aus rostfreiem Stahl befindet, abgeschirmt durch einen Wassertank. Hauptziel des Experiments ist die präzise Vermessung der monoenergetischen Neutrinos von der Sonne, die beim Elektroneneinfang von Beryllium-7 entstehen, um die Ergebnisse mit den theoretischen Vorhersagen zu vergleichen (siehe Artikel über Proton-Proton-Reaktion). Dadurch würden die Forscher die Kernfusionsprozesse im Kern der Sonne besser verstehen, und ebenso sollen damit die Eigenschaften der Neutrinooszillation besser verstanden werden. Andere Ziele des Experiments sind die Messung von Sonnenneutrinos aus Bor-8, pep und CNO. Es sollen auch Antineutrinos aus dem Erdinnern und Atomkraftwerken gemessen werden. Das Projekt könnte auch Neutrinos von Supernovae in der Milchstraße auffinden. Borexino ist Teil des Supernova Early Warning Systems.[3]

Als Teil des Borexino Experimentes ist momentan das SOX Projekt zur Suche nach sterilen Neutrinos in Vorbereitung.[4] Dieses Konzept sieht vor eine künstliche Neutrino bzw. Antineutrinoquelle unterhalb bzw. im Inneren des Detektors zu installieren. Obwohl ein steriles Neutrino nicht an der schwachen Wechselwirkung teilzunehmen vermag, würde es an den Neutrinooszillation teilnehmen. Dies bietet die Möglichkeit ein Oszillationsmuster erstmals im Inneren eines Detektors aufzunehmen.

Sprecher war 1990 bis 2011 Gianpaolo Bellini.

Resultate

Die grauen Bänder vergleichen die Regionen, in denen die Solar-Neutrino-Teleskope, die in der Lage sind, die Energie der Ereignisse zu messen, empfindlich sind. Zu beachten ist, dass die Vorhersagen von Solarmodellen im logarithmischen Maßstab gegeben sind: Super-Kamiokande und SNO können etwa 0,02 % der Gesamtmenge beobachten, während Borexino jede Art von vorhergesagtem Neutrino aus der Sonne beobachten kann.

Ab Mai 2007 begann der Borexinodetektor mit der Datenaufnahme.[5] Im August 2007 wurden erstmals Beryllium-7-Neutrinos aus der Sonne gemessen, wobei die Messung in Echtzeit erfolgte.[6][7] Die Daten wurden 2008 erweitert und präzisiert.[8]

2010 wurden erstmals Neutrinos aus dem Erdinnern beobachtet. Es handelt sich um Antineutrinos die aus den Zerfällen von Uran, Thorium, Kalium, und Rubidium entstehen.[9][10]

2011 veröffentlichte das Experiment eine Präzisionsmessung von Beryllium-7-Neutrinos aus der Sonne,[11][12] und im selben Jahr Sonnenneutrinos aus pep-Reaktionen.[13][14]

2012 veröffentlichten sie die Resultate von Messungen der Geschwindigkeit von CNGS-Neutrinos von CERN nach Gran Sasso. Die Resultate waren in Übereinstimmung mit der Lichtgeschwindigkeit.[15] Siehe Messungen der Neutrinogeschwindigkeit.

Ende August 2014 veröffentlichte die Borexino Kollaboration die Resultate zur Messung des primären Proton-Proton-Fusionsprozesses in der Sonne.[16] Dies stellt die erste direkte Messung der sogenannten primären pp Neutrinos dar.

SOX Projekt

SOX ist das englische Akronym für "short distance neutrino oscillations with Borexino". Das Projekt sieht vor eine künstliche Antineutrinoquelle im Tunnel unterhalb des Borexino Detektors zu installieren. Die Aktivität des radioaktiven beta Strahlers (Cerium-144) wird ca. 100 kCi betragen. Ce-144 zerfällt mit einer Halbwertzeit von ca. 285 Tagen in Pr-144. Die lange Halbwertzeit ermöglicht Transport und Installation der Antineutrinoquelle, während der hohe Q-Wert von Pr-144 (oberhalb der Schwelle für den inversen beta Zerfall) letztendlich die Antineutrinos zur Detektion liefert. Der Nachweis wird über den inversen beta Zerfall erfolgen. Hierbei wird ein promptes Signal, bestehend aus der Positron Annihilation, und ein verzögertes Signal durch den Einfang des Neutrons am Wasserstoff detektiert. Dies wird eine besonders untergrundarme Messung ermöglichen. [17][18]
Als weitere Option wird die Installation einer künstlichen Neutrinoquelle (Cr-51) erwogen.[17]. Der Nachweis wird hierbei analog zur Analyse der solaren Beryllium-7-Neutrinos erfolgen.
Der Beginn der Expositionsphase von CeSOX ist für Ende 2016 vorgesehen.

Weblinks

Einzelnachweise

  1. Georg G. Raffelt: BOREXINO. In:Stars As Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles. University of Chicago Press, 1996, ISBN 0-226-70272-3, S. 393–394.
  2. Borexino Experiment. In: Borexino, Offizielle Internetpräsenz. INFN. Abgerufen am 12. August 2011.
  3. Borexino collaboration: The Borexino detector at the Laboratori Nazionali del Gran Sasso. In: Nuclear Instruments and Methods in Physics Research Section A. 600, Nr. 3, 2008, S. 568-593. arxiv:0806.2400. bibcode:2009NIMPA.600..568B. doi:10.1016/j.nima.2008.11.076.
  4. Borexino collaboration: SOX: Short distance neutrino Oscillations with BoreXino. In: JHEP. 1308, Nr. 038, 2013. arxiv:1304.7721. doi:10.1007/JHEP08(2013)038.
  5. The Borexino experiment at Gran Sasso begins the data taking. Laboratori Nazionali del Gran Sasso press release. 29. Mai 2007. Abgerufen am 9. Oktober 2012.
  6. Emiliano Feresin: Low-energy neutrinos spotted. In: Nature news. 2007. doi:10.1038/news070820-5.
  7. Borexino collaboration: First real time detection of 7Be solar neutrinos by Borexino. In: Physics Letters B. 658, Nr. 4, 2007, S. 101-108. arxiv:0708.2251. bibcode:2008PhLB..658..101B. doi:10.1016/j.physletb.2007.09.054.
  8. Borexino collaboration: Direct Measurement of the Be7 Solar Neutrino Flux with 192 Days of Borexino Data. In: Physical Review Letters. 101, Nr. 9, 2008, S. 091302. arxiv:0805.3843. bibcode:2008PhRvL.101i1302A. doi:10.1103/PhysRevLett.101.091302.
  9. A first look at the Earth interior from the Gran Sasso underground laboratory. INFN press release. 11. März 2010. Abgerufen am 9. Oktober 2012.
  10. Borexino collaboration: Observation of geo-neutrinos. In: Physics Letters B. 687, Nr. 4–5, 2010, S. 299-304. arxiv:1003.0284. bibcode:2010PhLB..687..299B. doi:10.1016/j.physletb.2010.03.051.
  11. Precision measurement of the Beryllium solar neutrino flux and its day/night asymmetry, and independent validation of the LMA-MSW oscillation solution using Borexino-only data.. Borexino Collaboration press release. 11. April 2011. Abgerufen am 9. Oktober 2012.
  12. Borexino collaboration: Precision Measurement of the Be7 Solar Neutrino Interaction Rate in Borexino. In: Physical Review Letters. 107, Nr. 14, 2011, S. 141302. arxiv:1104.1816. bibcode:2011PhRvL.107n1302B. doi:10.1103/PhysRevLett.107.141302.
  13. Borexino Collaboration succeeds in spotting pep neutrinos emitted from the sun. PhysOrg.com. 9. Februar 2012. Abgerufen am 9. Oktober 2012.
  14. Borexino collaboration: First Evidence of pep Solar Neutrinos by Direct Detection in Borexino. In: Physical Review Letters. 108, Nr. 5, 2011, S. 051302. arxiv:1110.3230. bibcode:2012PhRvL.108e1302B. doi:10.1103/PhysRevLett.108.051302.
  15. Borexino collaboration: Measurement of CNGS muon neutrino speed with Borexino. In: Physics Letters B. 716, Nr. 3–5, 2012, S. 401–405. arxiv:1207.6860. bibcode:2012arXiv1207.6860B. doi:10.1016/j.physletb.2012.08.052.
  16. Borexino collaboration: Neutrinos from the primary proton–proton fusion process in the Sun. In: nature. 512, Nr. 7515, 2014. doi:10.1038/nature13702.
  17. 17,0 17,1 Mikko Meyer: Search for Sterile Neutrinos with the Borexino Detector. In: DESY-PROC-2014-4. 2014. doi:10.3204/DESY-PROC-2014-04/7.
  18. M. Pallavicini: The SOX project: a search for sterile neutrinos with BoreXino. In: PoS Neutel2013 (2013) 026. 2013.

Ähnliche Artikel wie "Borexino" auf cosmos-indirekt.de

25.11.2020
Sterne - Teilchenphysik
Der Sonne ein Stück näher
Der Borexino-Kollaboration, an der auch Wissenschaftler der TU Dresden beteiligt sind, ist es nach über 80 Jahren gelungen, den Bethe-Weizsäcker-Zyklus experimentell zu bestätigen.
22.01.2020

Signale aus dem Erdinneren: Borexino-Experiment veröffentlicht neue Daten zu Geoneutrinos
Die Wissenschaftlerinnen und Wissenschaftler der Borexino-Kollaboration haben neue Ergebnisse zur Messung von Neutrinos vorgelegt, die aus dem Innern der Erde stammen.
25.10.2018
Astrophysik - Teilchenphysik
Blick in die Sonne aus den Tiefen des Gran-Sasso-Massivs: Borexino berichtet über solare Neutrinos
Borexino-Experiment veröffentlicht Forschungsergebnisse über die „Geisterteilchen“ von der Sonne im Fachmagazin Nature

Diese Artikel könnten dir auch gefallen



Die letzten News


13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.
18.12.2020
Galaxienhaufen, gefangen im kosmischen Netz
Mehr als die Hälfte der Materie in unserem Universum entzog sich bislang unserem Blick.
18.12.2020
Zwei planetenähnliche Objekte, die wie Sterne geboren wurden
Ein internationales Forschungsteam unter der Leitung der Universität Bern hat ein exotisches System entdeckt, das aus zwei jungen planetenähnlichen Objekten besteht, die sich in sehr grosser Entfernung umkreisen.
16.12.2020
Neuen Quantenstrukturen auf der Spur
Der technologische Fortschritt unserer modernen Informationsgesellschaft basiert auf neuartigen Quantenmaterialien.
16.12.2020
Das Protonenrätsel geht in die nächste Runde
Physiker am Max-Planck-Institut für Quantenoptik haben die Quantenmechanik mit Hilfe der Wasserstoffspektroskopie einem neuen bis dato unerreichten Test unterzogen und sind der Lösung des bekannten Rätsels um den Protonenladungsradius damit ein gutes Stück nähergekommen.
03.12.2020
Laborexperimente könnten Rätsel um Mars-Mond Phobos lösen
Was lässt die Oberfläche des Mars-Monds Phobos verwittern? Ergebnisse der TU Wien liefern wichtige Erkenntnisse, bald soll eine Weltraummission Gesteinsproben nehmen.
26.11.2020
Gesund bis zum Mars
Tübinger Wissenschaftlerin untersucht mit internationalem Weltraumforschungsteam die Einflüsse der Raumfahrt auf den menschlichen Körper.
26.11.2020
Stammbaum der Milchstraße
Galaxien wie die Milchstraße sind durch das Verschmelzen von kleineren Vorgängergalaxien entstanden.
26.11.2020
Nanodiamanten vollständig integriert kontrollieren
Physikerinnen und Physikern ist es gelungen, Nanodiamanten vollständig in nanophotonischen Schaltkreisen zu integrieren und gleichzeitig mehrere dieser Nanodiamanten optisch zu adressieren. Die Studie schafft Grundlagen für zukünftige Anwendungen im Bereich der Quantensensorik oder Quanteninformationsverarbeitung.
26.11.2020
Der Sonne ein Stück näher
Der Borexino-Kollaboration, an der auch Wissenschaftler der TU Dresden beteiligt sind, ist es nach über 80 Jahren gelungen, den Bethe-Weizsäcker-Zyklus experimentell zu bestätigen.
22.11.2020
Entfernungen von Sternen
1838 gewann Friedrich Wilhelm Bessel das Wettrennen um die Messung der ersten Entfernung zu einem anderen Stern mit Hilfe der trigonometrischen Parallaxe - und legte damit die erste Entfernungsskala des Universums fest.