Bedeckungsveränderlicher Stern

Bedeckungsveränderlicher Stern

Animation eines bedeckungsveränderlichen Doppelsterns mit resultierender Lichtkurve.

Ein bedeckungsveränderlicher Stern oder fotometrischer Doppelstern ist ein Doppelsternsystem, dessen Bahn so im Raum liegt, dass sich die beiden Sterne von der Erde aus gesehen periodisch verdecken.

Der Prototyp dieser Doppelsterne ist Algol (β Persei) im Sternbild Perseus, den die Araber im Mittelalter Teufelsstern nannten. Seine Veränderlichkeit wurde bereits in der Antike bemerkt und seine genaue Periodizität 1783/84 von John Goodricke in den Philosophical Transactions veröffentlicht.[1] Algols Helligkeit sinkt alle 2,87 Tage auf ein Drittel ab und zeigt in der halben Periode ein kleines Nebenminimum.

Analyse der Lichtkurve

Aus der Lichtkurve, der Änderung der Helligkeit des nicht aufgelösten Doppelsternsystems während eines Umlaufs um den gemeinsamen Schwerpunkt, können die folgenden Parameter abgeleitet werden:

  • Die Umlaufzeit
  • Die Dauer des Haupt- und des Nebenminimums
  • Die eventuelle Dauer des Stillstands im Minimum im Fall einer totalen Bedeckung
  • Die Amplituden der Minima
  • Der Helligkeitsverlauf im Abfall und Anstieg der Minima

Aus diesen Daten kann auf die Flächenhelligkeiten der Sterne, die relativen Radien, die Bahnneigung, die Randverdunkelung, die Gravitationsverdunkelung, die Abweichung von der Kugelform durch Zentrifugalkräfte und der relative Abstand geschlossen werden. Wird die Beobachtung in einem fotometrischen System in mehreren Wellenlängen durchgeführt, kann auch auf die Oberflächentemperatur der Sterne geschlossen werden. Da Sterne nur einen begrenzten Bereich von Zustandsgrößen annehmen können, ist damit eine Bestimmung der absoluten Parameter wie Leuchtkraft und von geometrischen Parametern, z.B. Sternradien, möglich.

Wird der Verlauf der Radialgeschwindigkeit mittels des Dopplereffekts bestimmt, können auch die Massen der Sterne sowie die Bahnexzentrizität berechnet werden. Da nur bei bedeckungsveränderlichen Sternen die Bahnneigung eines optisch nicht in seine Komponenten auflösbaren Doppelsternsystems bestimmt werden kann, sind sie die wichtigste Quelle zur Bestimmung von Sternmassen.[2]

Klassifizierung

Es gibt zwei Hauptklassifizierungen für Bedeckungsveränderliche anhand der Lichtkurve und den geometrischen Verhältnissen:[3]

Lichtkurve

  • Algolsterne zeigen eine annähernd konstante Helligkeit zwischen den Minima
  • Bei Beta-Lyrae-Sternen ist der Lichtwechsel kontinuierlich veränderlich mit abgerundeten Maxima, aber unterschiedlich tiefen Minima. Die Umlaufdauer liegt zwischen einem und bis zu 20 Tagen.
  • Die W-Ursae-Maioris-Sterne ähneln den Beta-Lyrae-Sternen ohne Stillstände, wobei die Minima annähernd gleich tief sind. Die Umlaufdauer ist kürzer als ein Tag.

Geometrische Verhältnisse

  • Getrennte Systeme, die zwischen den Komponenten keinen Materieaustausch zeigen.
  • Halbgetrennte Systeme, bei denen einen Komponente die maximale Ausdehnung im Doppelsternsystem eingenommen hat. Bei jeder weiteren Expansion dieser Komponente würde Materie zum Begleiter fließen.
  • Bei Kontaktsystemen hat jede Komponente die maximale Ausdehnung angenommen und es besteht ein beständiger Materieaustausch zwischen den beiden Sternen.

Sonderformen

Neben Sternen können auch nichtleuchtende Begleiter eine Bedeckung verursachen. Dazu gehören Exoplaneten, Braune Zwerge und Staubscheiben wie im Fall Epsilon Aurigae. Weil diese Objekte nicht selbst leuchten, wird nur ein Rückgang der Helligkeit bei einem Bedeckungsveränderlichen pro Umlauf beobachtet. Planeten und braune Zwerge haben einen wesentlich kleineren Durchmesser als Sterne und deshalb ist die Helligkeitsänderung im Minimum gering. Die notwendige Messgenauigkeit lässt sich außerhalb der Erdatmosphäre mit wesentlich geringerem Instrumentenaufwand erreichen, speziell bei der gleichzeitigen und lange andauernden Überwachung einer großen Anzahl von Sternen zur Suche nach solchen Minima. So sind zum Beispiel die primären Ziele der Satellitenmissionen Kepler und COROT die Suche nach Exoplaneten mittels der Transitmethode.[4]

Daneben gibt es auch Dreifach-Bedeckungssysteme wie KOI-126. Hier umläuft in einer exzentrischen Bahn ein Stern ein enges Doppelsternsystem, wobei beide Sterne des engen Systems von dem ausgedehnten Begleiter bedeckt werden können. Die Lichtkurve erscheint unregelmäßig veränderlich aufgrund der Überlagerung der Minima.[5]

Nutzen für die Astrophysik

Künstlerische Darstellung eines Doppelsternsystems. Ein kompakter Stern akkretiert Gas der Atmosphäre seines Partners.

Der astrophysikalische Nutzen dieser Sternenklasse besteht in der Möglichkeit durch Messung der Lichtkurve auf die Bahndaten und physikalischen Zustandsgrößen der Sterne in dem Doppelsternsystem schließen zu können. So ist es mit Hilfe der neuen Generation von Großteleskopen möglich, bedeckungsveränderliche Sterne innerhalb der lokalen Gruppe zu finden und zu untersuchen. Durch die Ableitung der Leuchtkraft aus der Lichtkurve konnten die Entfernungen zu den Magellanschen Wolken, dem Andromedanebel, dem Dreiecksnebel und einigen Zwerggalaxien der lokalen Gruppe mit einer Genauigkeit von bis zu 6 % bestimmt werden.[6]

Bedeckungsveränderliche erlauben weiterhin die räumliche Auflösung von Strukturen auf oder nahe den Sternen des Doppelsternsystems. Dazu gehören:

Die Beobachtung einer Apsidendrehung der Bahn eines Bedeckungsveränderlichen ist relativ einfach, da in diesem Fall sich die Position des Haupt- und des Nebenminima relativ zueinander verändern. Da die Apsidendrehung auch abhängig von dem Aufbau der Sterne in dem Doppelsternsystem ist können Bedeckungsveränderliche auch zur Verifizierung von Modellen der inneren Struktur von Sternen genutzt werden.[7] Allerdings müssen dafür die Rotationsparameter und die Ausrichtung der Achsen bekannt sein wie im Falle DI Herculis.[8] Die Apsidendrehung kann auch zur Falsifikation von alternativen Gravitationstheorien genutzt werden. Mit diesen Hypothesen können die beobachteten Abweichungen der Rotationskurven von Galaxien, die dynamische Stabilität von Galaxienhaufen und die Gravitationslinsen durch Galaxien oder Cluster ebenso gut erklärt werden wie durch die Annahme von dunkler Materie. Die beobachteten Apsidendrehungen bei bedeckungsveränderlichen Sternen mit einer großen Bahnexzentrizität sollten in einigen Jahren von denen nach der Relativitätstheorie berechneten Werten abweichen und eine Unterscheidung ermöglichen.[9]

Da mit dem Abstand auch die Wahrscheinlichkeit einer gegenseitigen Bedeckung der Sterne abnimmt haben die meisten Bedeckungsveränderlichen kurze Perioden und daher eine kleine Bahnhalbachse im Verhältnis zu den Sternradien. Dadurch kann die Entwicklung der Sterne in Doppelsternsystemen von der von Einzelsternen abweichen aufgrund von Masseaustausch zwischen den Komponenten, beschleunigter Rotation und magnetischer Aktivität.

Periodenänderungen

Änderungen in dem Gesamtdrehimpuls des Doppelsternsystems oder in der Verteilung des Drehimpuls sollten zu einer Verschiebung des Zeitpunkts minimaler Helligkeit führen. Da sich die Änderung mit jedem Umlauf kumuliert sind kleinste Abweichungen messbar und Beobachtungen zeigen, dass die Umlaufzeiten vieler bedeckungsveränderlicher Sterne nicht konstant sind.[10][11] Dabei sind folgende Phänomene bekannt, die eine Periodenänderung auslösen oder vortäuschen können:

  • Apsidendrehung
  • Beim Lichtlaufzeiteffekt umkreist ein dritter Körper das Doppelsternsystem und verschiebt damit den Schwerpunkt, um den sich die beiden Sterne des Bedeckungsveränderlichen bewegen. Aufgrund der Endlichkeit der Lichtgeschwindigkeit verschiebt dies den Zeitpunkt minimaler Helligkeit.
  • Massenaustausch zwischen den Komponenten
  • Massenverlust aus dem Doppelsternsystem z. B. durch Sternwinde
  • Abstrahlung von Gravitationswellen
  • Der magnetische Drehimpulsverlust entsteht, wenn ein Stern ionisiertes Gas entlang der Magnetfeldlinien des Sterns verliert. Das Gas ist in den Magnetfeldlinien eingefroren bis zu dem Radius, bei dem das Magnetfeld mit Lichtgeschwindigkeit rotiert. Die Folge ist eine Abnahme der Rotationsgeschwindigkeit des Sterns und damit ein Verlust von Drehimpuls im Doppelsternsystem.
  • Beim Applegate-Mechanismus wird Drehimpuls im Laufe eines magnetischen Zyklus umverteilt zwischen der inneren und äußeren Konvektionszone eines Sterns. Dies führt zu einer Änderung der Rotationsabplattung und damit indirekt auch der Umlaufdauer, die dabei sowohl zunehmen und als auch abnehmen kann. Nach Beobachtungen treten zyklische Periodenzu- und -abnahmen fast ausschließlich nur bei bedeckungsveränderlichen Sternen auf, bei denen wenigstens eine Komponente magnetische Aktivität zeigt.[12]
  • Eine asymmetrische Helligkeitsverteilung auf der zu bedeckenden Hemisphäre durch Sternflecken
  • Durch Gezeitenkräfte ausgelöste Pulsationen, die häufig in Resonanz mit der Umlaufdauer des Doppelsterns sind.

Die meisten beobachteten Periodenänderungen bei bedeckungsveränderlichen Sternen werden dem Massenaustausch zwischen den Komponenten der Doppelsternsysteme zugeschrieben. Allerdings ist die Ursache vieler zyklischer Periodenänderungen nicht bekannt.

Änderung der Lichtkurve

Läuft ein dritter Stern um das gemeinsame Massenzentrum und liegt seine Umlaufbahn dabei nicht in der Ebene des Bedeckungsveränderlichen so führt dies zu einer Präzession der Bahn des engen Doppelsternsystems. In der Folge verändert sich die Inklination der Bahn und damit auch die Tiefe der Minima. Insgesamt ist nur eine geringe Zahl an Dreifachsystemen bekannt mit einer veränderlichen Tiefe der Minima aufgrund des gravitativen Einflusses eines dritten Körpers. Zu diesen Sternen gehören Algol und HS Hydrae.[13]

Daneben kann auch die Normalhelligkeit schwanken aufgrund von Änderungen an der Oberfläche von einer oder beiden Komponenten des Bedeckungsveränderlichen. Zu den bekanntesten Beispielen gehören die RS-Canum-Venaticorum-Sterne. Auf der Oberfläche eines späten Riesen bilden sich Sternflecken mit einem Radius bis zu 20° und einer Temperatur, die circa 1500 K unterhalb der ungestörten Sternoberfläche liegt. Dies führt zu Einsenkungen in den Lichtkurven, die im Laufe von Monaten bis Jahren durch die Lichtkurve wandern. Bei Bedeckungsveränderlichen ist aufgrund der gebundenen Rotation die Rotationsperiode identisch mit der Bahnumlaufdauer. Das langsame Wandern der Sternflecken über die Oberfläche ist daher die Folge einer differentiellen Rotation in den späten Riesen.[14] Auch bedeckungsveränderliche BY-Draconis-Sterne zeigen eine vergleichbare Modulation der Lichtkurve. Bei dieser Sternklasse handelt es sich um späte Zwerge mit Sternflecken auf ihren Oberflächen.[15]

Künstlerische Darstellung der vom Planeten KIC 12557548b ausgehenden Staubwolke

Wenn ein Planet seinem Zentralstern zu nahe kommt, heizt er sich so weit auf, dass Teile seiner Oberfläche verdampfen und die Materie das Gravitationsfeld des Super Mercury verlassen können. Wenn die Bahn des Planeten von der Erde aus gesehen vor dem Stern vorbeiführt, kann es zu einer veränderlichen Tiefe und Dauer des Bedeckungsminima kommen. Dabei ist die Umlaufdauer konstant wie im Fall von KIC 12557548, wo die Tiefe der Minima zwischen 0,2 % und 1,2 % schwankt. Die verdampfte Materie kondensiert in einer Entfernung vom Stern wieder zu Staub und absorbiert das Sternlicht sehr effektiv. Die Bedeckungslichtkurve ist asymmetrisch und wie bei allen Planetentransits fehlt das sekundäre Minimum.[16]

Weblinks

  • Sternwarte Hagen – interaktives Java-Applet zur Veranschaulichung der Geometrie und der resultierenden Lichtkurven (nebst theoretischer Behandlung).

Quellen

  1. z.B. Zdenek Kopal: Dynamics of Close Binary Systems. 1978 (1914), S. 3 unten; The Philosophical Transactions of the Royal Society of London, from Their Commencement in 1665 to the Year 1800. veröffentlicht 1809, S. 456ff
  2. W. Strohmeier: Veränderliche Sterne. Treugesell-Verlag, Düsseldorf 1974.
  3. John R. Percy: Understanding Variable Stars. Cambridge University Press, Cambridge 2007, ISBN 978-0-521-23253-1.
  4. Alfred Weigert, Heinrich Johannes Wendker, Lutz Wisotzki: Astronomie und Astrophysik. Ein Grundkurs.
  5. Joshua A. Carter u. a.: KOI-126: A Triply-Eclipsing Hierarchical Triple with Two Low-Mass Stars. In: Astrophysics. Solar and Stellar Astrophysics. 2011, arxiv:1102.0562v1.
  6. Alceste Z. Bonanos: Eclipsing Binaries: Tools for Calibrating the Extragalactic Distance Scale. In: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics, International Astronomical Union. Symposium no. 240, held 22–25 August, 2006 in Prague, Czech Republic, S240, #008. 2006. arxiv:astro-ph/0610923.
  7. P. Zasche: On the apsidal-motion of thirteen eclipsing binaries. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1204.5578v1.
  8. S. Albrecht, S. Reffert, I. Snellen: Misaligned spin and orbital axes cause the anomalous precession of DI Herculis. In: Nature. Band 461, 2009, S. 373–376, doi:10.1038/nature08408.
  9. M. De Laurentis, R. De Rosa, F. Garufi, L. Milano: Testing gravitational theories using Eccentric Eclipsing Detached Binaries. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1207.5410v1.
  10. Cuno Hoffmeister, G. Richter, W. Wenzel: Veränderliche Sterne. J. A. Barth Verlag, Leipzig 1990, ISBN 3-335-00224-5.
  11. D. R. Gies, S. J. Williams, R. A. Matson, Z. Guo, S. M. Thomas: A Search for Hierarchical Triples using Kepler Eclipse Timing. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1204.0030v1.
  12. Jetsu, L., Porceddu, S., Lyytinen, J., Kajatkari, P., Lehtinen, J., Markkanen, T, Toivari-Viitala, J.: Did the Ancient Egyptians Record the Period of the Eclipsing Binary Algol – The Raging One?. In: The Astrophysical Journal. 773, Nr. 1, 2013, S. A1 (14pp). bibcode:2013ApJ...773....1J. doi:10.1088/0004-637X/773/1/1.
  13. P. Zasche and A. Paschke: HS Hydrae about to turn off its eclipses. In: Astronomy & Astrophysics. Band 542, 2012, S. L23, doi:10.1051/0004-6361/201219392.
  14. Arnold, C. N., Montle, R. E., Stuhlinger, T. W., & Hall, D. S.: UBV photometry and light curve solution of the eclipsing RS CVn binary SS Cam. In: Acta Astronomica. Band 29, 1979, S. 243–258.
  15. J. MacDonald and D. J. Mullan: Precision modeling of M dwarf stars: the magnetic components of CM Draconis. In: Astrophysics. Solar and Stellar Astrophysics. 2011, arxiv:1106.1452v1.
  16. M. Brogi, C. U. Keller, M. de Juan Ovelar, M. A. Kenworthy, R. J. de Kok, M. Min, I. A. G. Snellen: Evidence for the disintegration of KIC 12557548 b. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1208.2988.

Diese Artikel könnten dir auch gefallen



Die letzten News


04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.