BaBar-Experiment

BaBar-Experiment

BaBar ist der Name für ein Experiment der Hochenergiephysik.

Es ist am Stanford Linear Accelerator Center in der Nähe der Stanford University in Kalifornien aufgebaut. Ein wesentliches Ziel des Experimentes ist es, Erkenntnisse über die Ursache der sogenannten CP-Verletzung zu finden, die eine wesentliche Voraussetzung für das fast völlige Fehlen von Antimaterie im Universum ist (Baryonenasymmetrie). Die beobachtbare CP-Verletzung, eine Verletzung der Symmetrie von Ladung und Parität, wird dabei im Zerfall von B-Mesonen untersucht und mit den Vorhersagen des Standardmodells der Teilchenphysik verglichen. Die CP-Verletzung zeigt sich hierbei in unterschiedlichem Verhalten von B- und Anti-B-Mesonen.

Die BaBar-Kollaboration besteht aus mehr als 600 Physikern und Ingenieuren aus 72 Instituten in 12 Ländern. Das Experiment wurde benannt nach „B and B-bar“, also $ B $ und $ \bar B $, wobei Letzteres für das Anti-B steht und im Englischen als B-bar bezeichnet wird.

BaBar und der Elektron-Positron-Speicherring PEP-II samt Vorbeschleunigern stellen eine sogenannte B-Fabrik dar. Die B-Fabrik am SLAC wurde 1993 als Initiative des US-Präsidenten Bill Clinton ins Leben gerufen. Die Datennahme des Babar-Experiments begann im Mai 1999. Nahezu zeitgleich mit dem Konkurrenzexperiment Belle am KEKB in Japan (KEK) ist es schon nach kurzer Anlaufzeit im Sommer 2002 gelungen, CP-Verletzung im System neutraler Mesonen mit einer Signifikanz von mehr als 5σ nachzuweisen.[1] Bis heute (Stand August 2016) ist kein Widerspruch zu den Vorhersagen des Standardmodells gefunden worden. CP-Verletzung wurde das erste (und vor BaBar einzige) Mal im System neutraler Kaonen nachgewiesen.

Der BaBar-Detektor ist ein (fast) 4π-Teilchendetektor mit typischem Schalenaufbau. Ein Silizium-Vertex-Tracker im Inneren sorgt für eine Vertexauflösung von besser als 60 µm. Eine Vieldraht-Driftkammer rekonstruiert Impulse geladener Teilchen.

Eine Besonderheit ist ein abbildender Tscherenkow-Detektor mit neuartigem Design, der sehr wenig Material im aktiven Bereich des Detektors benötigt. Pionen und Kaonen können so sehr effizient in allen Impulsbereichen voneinander unterschieden werden.

Weiter außen rekonstruiert ein CsI(Tl)-Kalorimeter die Energien von neutralen Teilchen.

Umschlossen wird der Detektor von Myon-Kammern. Eine weitere Besonderheit der B-Fabrik ist die asymmetrische Energie der beiden Elektron- (9,0 GeV) und Positron-Strahlen (3,1 GeV) die im Inneren des Detektors zur Kollision gebracht werden. Die Folge ist, dass sich das Schwerpunktsystem relativ zum Detektor bewegt. Hierdurch wird die Rekonstruktion von unterschiedlichen B-Zerfallsvertizes und damit die Bestimmung der Differenz der Zerfallszeiten der paarweise erzeugten B-Mesonen erst möglich, was eine Voraussetzung für die Messung von zeitabhängigen CP-Asymmetrien bei einer B-Fabrik ist.

Die Datennahme verlief erfolgreich und wurde im April 2008 eingestellt. PEP-II konnte eine integrierte Luminosität von ca. 557 fb−1 liefern, wobei eine maximale instantane Luminosität von 1,2 · 1034cm−2s−1 erzielt wurde. Für die B-Physik relevant war die Datennahme auf der Υ(4S)-Resonanz, bei der eine integrierte Luminosität von 424 fb−1 aufgezeichnet wurde.[2] Bislang (Stand Februar 2013) sind die Ergebnisse der Datenanalysen in mehr als 500 Veröffentlichungen in referierten Journalen erschienen[3]. Die Analyse der BaBar-Daten wird auch nach Ende der Datennahme fortgesetzt. So gelang 2012 der direkte Nachweis der T-Verletzung.[4][5]

Weblinks

Einzelnachweise

  1. B. Aubert et al.: Measurement of the CP-Violating Asymmetry Amplitude sin2β. In: Phys. Rev. Lett 89, 201802 (2002) arxiv:hep-ex/0207042.
  2. J.P. Lees et al.:Time-Integrated Luminosity Recorded by the BABAR Detector at the PEP-II e+e- Collider, (2013), arxiv:1301.2703.
  3. Liste der BaBar-Veröffentlichungen
  4. J. P. Lees u. a. Observation of Time-Reversal Violation in the B0 Meson System, Phys. Rev. Lett., Band 109, 2012, S. 211801
  5. Dirk Eidemüller Zeitasymmetrie erstmals direkt nachgewiesen, Pro Physik, November 2012

Diese Artikel könnten dir auch gefallen



Die letzten News


27.01.2021
Aus Weiß wird (Extrem)-Ultraviolett
Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben eine neue Methode entwickelt, um die spektrale Breite von extrem-ultraviolettem (XUV) Licht zu modifizieren.
27.01.2021
Neue Möglichkeiten bei Suche nach kalter dunkler Materie
Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) am Antiprotonen-Entschleuniger des CERN hat neue Grenzen für die Masse von Axion-ähnlichen Teilchen – hypothetischen Teilchen, die Kandidaten für dunkle Materie sind – festgelegt und eingeschränkt, wie leicht sie sich in Photonen, die Teilchen des Lichts, verwandeln können.
25.01.2021
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.