Absoluter Raum

Absoluter Raum

Der absolute Raum ist der von Isaac Newton postulierte, sowohl vom Beobachter als auch von den darin enthaltenen Objekten und darin stattfindenden physikalischen Vorgängen unabhängige physikalische Raum. Albert Einsteins Relativitätstheorie ersetzt den absoluten Raum, zusammen mit der ebenfalls von Newton postulierten absoluten Zeit, durch eine dynamische Raumzeit, in der Raum und Zeit sowohl vom Beobachter als auch von der Verteilung und Bewegung der enthaltenen Materie abhängen.

Auf der Vorstellung vom absoluten Raum und der absoluten Zeit gründet die Klassische Physik, insbesondere die Klassische Mechanik. Demnach finden alle Bewegungen relativ zum absoluten Raum statt. Allerdings ist es aufgrund der Galilei-Invarianz der Gesetze der klassischen Mechanik unmöglich, mit einem mechanischen Experiment eine konstante Geschwindigkeit relativ zum absoluten Raum festzustellen. Das Relativitätsprinzip, das der Relativitätstheorie zugrunde liegt, drückt aus, dass dies durch überhaupt kein Experiment feststellbar ist.

Das Eimer-Argument

Das zentrale Argument Newtons für einen absoluten Raum lautet wie folgt:

Ein mit Wasser gefüllter Eimer wird an einem Seil aufgehängt. Verdreht man das Seil und lässt den Eimer los, wird dieser anfangen zu rotieren. Anfangs ist die Wasseroberfläche noch eben. Nach einer kurzen Zeit macht das Wasser durch Reibungskräfte die Rotation des Eimers mit und es bildet sich eine konkave Oberfläche. Hält man den Eimer an, wird das Wasser noch weiter rotieren und seine konkave Oberfläche behalten. Da Bewegung, gleichförmige oder beschleunigte, nur in Bezug auf ein anderes Objekt bestimmt werden kann, überlegte Newton, welchen Bezugspunkt er, unter der Voraussetzung eines ansonsten leeren Raumes, für die Rotation des Wassers nehmen kann. Der Eimer kann nicht als Bezugspunkt genommen werden. Zu Beginn des Experiments (der Eimer fängt an zu rotieren) ist eine relative Bewegung zwischen Eimer und Wasser zu beobachten. Wenn das Wasser mitrotiert, ist keine relative Bewegung mehr vorhanden. Ganz zum Schluss, wenn der Eimer angehalten wird, ist wieder eine relative Bewegung beobachtbar. Man sieht also, dass die Wasseroberfläche bei vorhandener und nicht vorhandener Rotation des Eimers konkav ist. Der Eimer als Bezugspunkt scheidet also aus. Da Newton außer dem Wassereimer keine weiteren Objekte im Raum zuließ, fehlte ihm ein Bezugspunkt, um zu entscheiden, ob das Wasser rotiert oder nicht.

Um diesem Dilemma zu entkommen, führte Newton den absoluten Raum ein. Der absolute Raum war für Newton das letzte, absolute Bezugssystem. Ein Objekt ist für ihn in Ruhe, wenn es in Bezug auf den absoluten Raum in Ruhe ist, und ein Objekt ist für ihn in Bewegung, wenn es in Bezug auf den absoluten Raum in Bewegung ist. Ob das Wasser rotiert, konnte er nun in Bezug auf den absoluten Raum bestimmen.[1]

Auch das Foucaultsche Pendel ist ein Beispiel für eine solche Messung von Drehungen unabhängig von externen Objekten. Foucault zeigte damit, dass sich die Erde selbst dreht und nicht der Sternenhimmel um die Erde.

Eine andere Interpretation dieses Experiments ist das Machsche Prinzip. Dieses erklärt die Fliehkraft als Einfluss der fernen Massen und kommt daher ohne absoluten Raum aus.

Literatur

  • Markus Fierz: Über den Ursprung und die Bedeutung der Lehre Isaac Newtons vom absoluten Raum. In: Gesnerus. Jg. 11 (1954), S. 62–120.

Einzelnachweise

  1. Brian Greene: Der Stoff, aus dem der Kosmos ist: Raum, Zeit und die Beschaffenheit der Wirklichkeit. Siedler, München 2004, ISBN 3-88680-738-X.

Diese Artikel könnten dir auch gefallen



Die letzten News


25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
02.02.2021
Entwicklung einer rekordverdächtigen Quelle für Einzelphotonen
Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann.
02.02.2021
Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
01.02.2021
Durch die fünfte Dimension zur Dunklen Materie
Eine Entdeckung in der theoretischen Physik könnte helfen, das Rätsel der Dunklen Materie zu lösen.