Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet

Neues aus der Forschung

Meldung vom 11.07.2017

Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen. Trotz ihrer potenziellen Bedeutung für die Elektronik und die Medizintechnik war bisher nicht bekannt, wie der physikalische Mechanismus hinter der Hochtemperatur-Supraleitung funktioniert.


170711-1353_medium.jpg
 
Cooper-Paare auf mikroskopischer Skala: Die Eisenatome in eisenbasierten Supraleitern bilden ein Quadratgitter mit jeweils zwei aktiven Orbitalen.
Foto: Peter O. Sprau, Yi Xue Chong, Cornell University
P. O. Sprau et al. 2017. Discovery of orbital-selective Cooper pairing in FeSe. Science 07 Jul 2017: Vol. 357, Issue 6346, pp. 75-80
DOI: 10.1126/science.aal1575

Ein internationales Forscherteam der Universität Leipzig und insbesondere der Universität von Cornell, USA, hat nun eine entscheidende Erkenntnis hin zu einem besseren Verständnis errungen - ein wesentlicher Schritt auf dem Weg zu einer breiteren Nutzung dieser Technologie. Die Erkenntnisse wurden heute im renommierten Fachmagazin Science veröffentlicht.

Für die technologische Anwendung ist es erstrebenswert, Supraleiter zu verwenden, die eine hohe sogenannte Sprungtemperatur haben. Oberhalb dieser Temperatur befindet sich das Material im normal leitenden, unterhalb davon im supraleitenden Zustand. Bei Hochtemperatursupraleitern (HTSL) kann wegen ihrer höheren Sprungtemperatur für die Kühlung der preiswertere flüssige Stickstoff verwendet werden - statt des wesentlich teureren, flüssigen Heliums bei herkömmlichen Supraleitern.

Obwohl HTSL bereits seit vielen Jahren bekannt sind, hat man bisher noch nicht genau verstanden, wie der physikalische Mechanismus dahinter funktioniert und warum manche der Materialien bereits bei Temperaturen von über 100 Kelvin, etwa -170 Grad Celsius, zum Supraleiter werden, andere mit ganz ähnlichen kristallinen Strukturen jedoch erst unter 10 Kelvin, etwa -260 Grad Celsius, und andere wiederum gar nicht. Würde man diese Zusammenhänge besser verstehen, so wäre es in Zukunft eventuell möglich, diese Leitung von Strom ohne Verluste auch bei höheren Temperaturen zu erreichen.

Physiker der Universität Leipzig haben nun gemeinsam mit ihren US-amerikanischen und dänischen Kollegen einen entscheidenden Schritt auf dem Weg zu einem besseren Verständnis getan: Voraussetzung für die Supraleitung ist, dass bei tiefen Temperaturen zwischen zwei Elektronen eine anziehende Wechselwirkung entsteht. Dadurch können sich zwischen zwei Elektronen mit unterschiedlichen elektronischen Eigenschaften, das heißt, unterschiedlichem Eigendrehimpuls, die sogenannten Cooper-Paare bilden. Diese tragen dann dazu bei, den Strom verlustfrei durch den Supraleiter zu transportieren. Das Forscherteam konnte nun herausfinden, wie es zu dieser selektiven Paarbildung kommen kann.

"Wir haben beobachtet, dass es zwei Arten von Elektronen gibt, die sich durch elektronische Zustände, also ihren Aufenthalt in unterschiedlichen Orbitalen, unterscheiden. Elektronen in einem bestimmten Orbital bilden Cooper-Paare, während Elektronen des anderen Orbitals zur notwendigen Wechselwirkung beitragen. Das eine Elektron ist in Längsrichtung ausgerichtet, das andere Elektron vor allem in Querrichtung", erklärt Dr. Andreas Kreisel, Wissenschaftler am Institut für Theoretische Physik an der Universität Leipzig und einer der beteiligten Forscher. "Entscheidend für die Cooper-Paarung ist, dass die Elektronen in jeweils verschiedenen elektronischen Zuständen, Orbitalen, sind."

Zu diesen Erkenntnissen gelangten die Physiker anhand von Eisen-Selenid, einem eisenbasierten HTSL, der sich unter anderem durch seinen einfachen chemischen Aufbau gut eignet, um die Mechanismen der Supraleitung aufzuklären. Untersucht haben die Wissenschaftler die Eigenschaften der Elektronen wiederum mithilfe der Scanning-Tunneling-Mikroskopie. Dabei wird eine atomar dünne Nadelspitze über die Oberfläche des Eisen-Selenid-Kristalls bewegt und eine elektrische Spannung angelegt. Misst man dann den elektrischen Strom, lassen sich Strukturen von sub-atomarer Größe auflösen und Unregelmäßigkeiten aufspüren. Anhand der Interferenzmuster an diesen Unregelmäßigkeiten konnten sie schließlich schlussfolgern, dass Supraleitung selektiv nur von einer der beiden Arten von Elektronen ausgehen kann.

Das Thema Supraleiter beschäftigt die Physik bereits seit mehreren Jahrzehnten. Bisher sind zu keinem anderen Einzelthema mit fünf Nobelpreisen so viele dieser höchsten wissenschaftlichen Auszeichnungen verliehen worden - und entsprechend groß ist das Interesse daran, die richtige Theorie hinter der Supraleitung zu finden. Falls es tatsächlich gelänge, ein bei gewöhnlicher Umgebungstemperatur supraleitendes Material zu finden, würde dies höchstwahrscheinlich die moderne Technik tiefgreifend verändern.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung