Was wäre, wenn Schrödingers tote Katze sich mit einer lebendigen überlagerte

Neues aus der Forschung

Meldung vom 06.02.2019

Wie schon Hamlet feststellte, können in einer klassischen Welt Dinge entweder Sein oder Nichtsein. Eine dritte Möglichkeit gibt es nicht. In der Quantenwelt können Sein und Nichtsein dagegen koexistieren oder einander überlagert sein, wie der Physiker sagt. Die Paradoxie einer solchen Überlagerung wurde von Schrödinger am Beispiel einer bedauernswerten Katze veranschaulicht, die sich in einem versiegelten Kasten befindet, und in einem Überlagerungszustand von „lebendig“ und „tot“ befindet, solange der Zustand nicht durch einen Messprozess auf eine der beiden Alternativen festgelegt wurde.


190207-2359_medium.jpg
 
Destruktive Interferenz einer Elektronenwelle in einer Kohlenstoff-Nanoröhre.
A. Donarini, M. Niklas, M. Schafberger, N. Paradiso, C. Strunk, M. Grifoni
Coherent population trapping by dark state formation in a carbon nanotube quantum dot
Nature Communications 10, 381 (2019)
DOI: 10.1038/s41467-018-08112-x


Ein Beispiel solcher Überlagerung in der Quantenwelt ist das Phänomen der optisch induzierten Transparenz. In einem wichtigen Experiment der Atomphysik wurde ein Gas von zwei Lasern mit unterschiedlicher Farbe beleuchtet. Solange nur ein Laser aktiv ist, kann das Licht durch die Anregung der Atome absorbiert werden. Wird jedoch gleichzeitig mit beiden Lasern beleuchtet, können sich die Anregungsprozesse destruktiv überlagern und sich damit gegenseitig unterdrücken – das Gas absorbiert nicht mehr und wird durchsichtig. Die zusätzliche Beleuchtung unterdrückt die Absorption des Lichts.

Einem Team von Physikern um Milena Grifoni und Andrea Donarini (Theoretische Physik) und Christoph Strunk und Nicola Paradiso (Experimentalphysik) an der Universität Regensburg gelang es jetzt, ein solches Schema in einer rein elektronischen Versuchsanordnung zu realisieren. Das Experiment wurde in der Zeitschrift „Nature Communications“ publiziert. Die Anordnung enthält eine Kohlenstoff-Nanoröhren (KNR) welche mittels zweier metallischer Elektroden kontaktiert wird (s. Abbildung). Eine Kohlenstoff-Nanoröhre ist ein Hohlzylinder aus reinem Kohlenstoff mit einem Durchmesser von nur einem millionstel Millimeter, dessen Wand nur eine Atomlage dick ist und dessen elektrischer Leitwert wie bei einem Transistor gesteuert werden kann.

Der Stromeingang (oder Ausgang) in die Nanoröhre erfolgt ähnlich wie die Durchquerung einer Drehtür. Ähnlich einer Drehtür kann nur ein Elektron nach dem anderen herein kommen. Klassisch können sich die Elektronen entweder mit (rote Bahn in Abbildung) oder entgegen (grüne Bahn) dem Uhrzeigersinn durch die Nanoröhre bewegen. In der Quantenwelt müssen sich die Elektronen nicht für einen Drehsinn entscheiden, sondern sie können eine Überlagerung von beiden einnehmen. Dieses Phänomen führt, wie in dem optischen Experiment, zur Interferenz: die beiden Alternativen können sich gegenseitig verstärken (konstruktiv) oder auslöschen (destruktiv). Im ersten Fall gelingt die Durchquerung der Drehtür leicht, im zweiten Fall wird die Drehtür blockiert und wird erst nach einiger Zeit wieder frei. Wenn sich die beiden Durchquerungsmöglichkeiten konstruktiv überlagern, fließt der elektrische Strom ungehindert, während er blockiert wird, wenn die Interferenz destruktiv ist. Weil das Elektron in diesem Fall gefangen ist, spricht man in Analogie zur Quantenoptik von einen Dunkelzustand („dark state“).

Obwohl diese Möglichkeit für Elektronen schon seit zwei Jahrzehnten theoretisch vorhergesagt wurde, ist es erst jetzt gelungen dies experimentell nachzuweisen. Darüber hinaus ist es gelungen, den Mechanismus der Blockade in der Nanoröhre zu modellieren und damit zu verstehen. Das Experiment ist ein weiterer Schritt auf dem Weg zur künftigen Nutzung von Quantenphänomenen in der Elektronik und Informationsverarbeitung.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 15.02.2019

„Sternschweife“ - der Beginn vom Ende eines offenen Sternhaufens

Im Laufe ihres Lebens verlieren offene Sternhaufen kontinuierlich Sterne an ihre Umgebung. Dadurch entstehende ...

Meldung vom 13.02.2019

Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedene ...

Meldung vom 13.02.2019

Neutronensterne: Wie kosmische Ereignisse Einblick in grundlegende Eigenschaften der Materie geben

Seitdem es möglich ist, Gravitationswellen von zwei miteinander verschmelzenden Neutronensternen zu messen, b ...

Meldung vom 12.02.2019

Verwandlung im Licht

Laserphysiker nehmen Schnappschüsse vom Kohlenstoffmolekül C₆₀ auf und weisen seine Verwandlung im stark ...

Meldung vom 12.02.2019

Ungewöhnliche Symmetrie: Physiker kontrollieren Elektronen mit ultraschnellen Laserpulsen

Symmetrien sind in der Natur allgegenwärtig – etwa die Spiegelsymmetrie der Hände oder die sechszählige S ...

Meldung vom 12.02.2019

Rätselhafte Größe extrem leichter Calciumisotope

Ein internationales Forschungsprojekt unter Beteiligung von Kernphysikern und Kernphysikerinnen der TU Darmsta ...

Meldung vom 11.02.2019

Halte Kontakt, nutze das Vakuum! Wie Spiegel die Chemie und Physik beeinflussen können

Die Theorie hamburgischer Wissenschaftler zum polaritonisch verstärkten Energietransfer von Molekülen über ...

Meldung vom 08.02.2019

Kryo-Kraftspektroskopie zeigt mechanische Eigenschaften von DNA-Bauteilen auf

Physiker der Universität Basel haben eine neue Methode entwickelt, mit der sie bei sehr tiefen Temperaturen d ...

Meldung vom 08.02.2019

Ordnung im Periodensystem – Ionisierungsenergien bestätigt Actinoiden-Serienende bei Lawrencium

Eine internationale Gruppe von Forscherinnen und Forschern unter Beteiligung des GSI Helmholtzzentrums für Sc ...

Meldung vom 07.02.2019

Ultrakurzzeit-Experimente im Schnelldurchlauf

Laserforscher der MEGAS-Kooperation verkürzen die Dauer von Messkampagnen zur Beobachtung von Elektronenbeweg ...

Meldung vom 06.02.2019

Blasen von brandneuen Sternen

Diese beeindruckende Region neu gebildeter Sterne in der Großen Magellanschen Wolke (GMW) wurde vom Multi Uni ...

Meldung vom 06.02.2019

Rotationsdynamik von Galaxien: Physiker analysieren Einfluss der Photonmasse

Ist es möglich, dass die Wirkung der Photonenmasse auf die gasförmigen Komponenten in Galaxien so stark ist ...

Meldung vom 06.02.2019

Was wäre, wenn Schrödingers tote Katze sich mit einer lebendigen überlagerte

Wie schon Hamlet feststellte, können in einer klassischen Welt Dinge entweder Sein oder Nichtsein. Eine dritt ...

Meldung vom 01.02.2019

Etiketten der Zukunft: Dresdner Physiker schreiben, lesen und radieren mit Licht

Einem Team von Physikern unter Leitung von Prof. Sebastian Reineke von der Technischen Universität Dresden is ...

Meldung vom 01.02.2019

Virtuelle Linse verbessert Röntgenmikroskopie

Röntgenstrahlen ermöglichen einzigartige Einblicke in das Innere von Materialien, Gewebe und Zellen. Forsche ...

Meldung vom 31.01.2019

Meteoriteneinschläge im Labor - Simulationsexperimente zeigen Strukturänderung von Mineralien

Ein deutsch-amerikanisches Forschungsteam hat Meteoriteneinschläge im Labor simuliert und die resultierenden ...


17.01.2019:
Wie Gletscher gleiten

19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung