Verschränkte Atome leuchten im Gleichklang

Neues aus der Forschung


Das könnte Dich auch interessieren

Meldung vom 15.05.2018

Einem Team um Experimentalphysiker Rainer Blatt ist es gelungen, die Quantenverschränkung zweier räumlich getrennter Atome durch die Beobachtung ihrer Lichtemission zu charakterisieren. Dieses grundlegende Experiment könnte zur Entwicklung hochempfindlicher optischer Gradiometer zur präzisen Bestimmung des Schwerefelds oder des Erdmagnetfelds führen.


180515-2036_medium.jpg
 
Über die Interferenz von Lichtteilchen, die von zwei Atomen ausgesendet werden, lässt sich deren Verschränkung charakterisieren.
Gabriel Araneda, Daniel B. Higginbottom, Lukáš Slodička, Yves Colombe, Rainer Blatt
Interference of single photons emitted by entangled atoms in free space
Phys. Rev. Lett. 120, 193603
DOI: 10.1103/PhysRevLett.120.193603


Das Zeitalter der Quantentechnologie ist längst eingeläutet. In der jahrzehntelangen Erforschung der Quantenwelt wurden Methoden entwickelt, die es heute möglich machen, Quanteneigenschaften gezielt für technische Anwendungen auszunutzen. Das Team um den Innsbrucker Quantencomputer-Pionier Rainer Blatt kontrolliert in seinen Experimenten in Ionenfallen einzelne Atome sehr exakt. Die gezielte Verschränkung dieser Quantenteilchen eröffnet nicht nur die Möglichkeit zum Bau eines Quantencomputers, sondern schafft auch die Grundlage für die Messung von physikalischen Eigenschaften in bisher ungekannter Präzision. Den Physikern ist es nun erstmals gelungen, die Interferenz von einzelnen Lichtteilchen, die von zwei verschränkten, aber räumlich getrennten Atomen ausgesendet werden, zu demonstrieren.

Sehr empfindliche Messungen

„Wir können heute die Position und Verschränkung von Teilchen sehr exakt kontrollieren und bei Bedarf einzelne Photonen erzeugen“, erzählt Gabriel Araneda aus dem Team von Rainer Blatt am Institut für Experimentalphysik der Universität Innsbruck. „Zusammen ermöglicht uns das, die Auswirkungen von Verschränkung auf die kollektive Wechselwirkung von Atomen und Licht zu untersuchen.“ Die Physiker der Universität Innsbruck verglichen die Überlagerung von Licht, das einmal von verschränkten und ein andermal von nicht verschränkten Barium-Atomen ausgesendet wurde. Die Messungen zeigten, dass diese qualitativ unterschiedlich sind. Tatsächlich entspricht der gemessene Unterschied der Interferenzstreifen direkt dem Betrag der Verschränkung der Atome. „Auf diese Weise können wir die Verschränkung rein optisch charakterisieren“, unterstreicht Gabriel Araneda die Bedeutung des Experiments. Die Physiker konnten aber auch demonstrieren, dass das Interferenzsignal gegenüber Umwelteinflüssen am Standort der Atome sehr empfindlich ist. „Wir haben diese Empfindlichkeit ausgenutzt, um mit Hilfe des beobachteten Interferenzsignals die Magnetfeldgradienten zu ermitteln“, sagt Araneda. Die Technik könnte so die Grundlage für den Bau von hochempfindlichen optischen Gradiometer bilden. Da der gemessene Effekt vom Abstand der Teilchen unabhängig ist, könnten die Messungen einen präzisen Vergleich der Feldstärken zum Beispiel des Erdmagnetfelds oder der Gravitation an verschiedenen Ort ermöglichen.

Veröffentlicht wurde die Arbeit in der Fachzeitschrift Physical Review Letters. Die Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF, der Europäischen Union und der Tiroler Industrie finanziell unterstützt.


News der letzten 7 Tage

8 Meldungen

Meldung vom 19.03.2019

Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der ...

Meldung vom 14.03.2019

Berner Mars-Kamera CaSSIS liefert spektakuläre Bilder

Vor drei Jahren, am 14. März 2016, war es soweit: die Berner Mars-Kamera CaSSIS startete mit der Raumsonde Ex ...

Meldung vom 14.03.2019

Eine kosmische Fledermaus in der Dunkelheit

Versteckt in einer der dunkelsten Ecken des Sternbilds Orion, breitet diese kosmische Fledermaus ihre diffusen ...

Meldung vom 14.03.2019

DFKI präsentiert neue Generation autonomer Weltraumroboter auf der Hannover Messe 2019

Roboter im Weltraum sind heute meist passive Beobachter oder werden durch den Menschen von der Erde aus gesteu ...

Meldung vom 13.03.2019

Test der Symmetrie der Raumzeit mit Atomuhren

Der Vergleich zweier optischer Atomuhren bestätigt ihre hohe Genauigkeit und eine Grundannahme der Relativit ...

Meldung vom 13.03.2019

Neuronale Netze ermitteln die Masse von Planeten

Um herauszufinden, wie Planeten entstehen, führen Astrophysikerinnen und Astrophysiker komplizierte und zeita ...

Meldung vom 12.03.2019

Wie schwere Elemente im Universum entstehen

Bei Sternenexplosionen oder an der Oberfläche von Neutronensternen entstehen schwere Elemente durch den Einfa ...

Meldung vom 12.03.2019

Chemischer Wasserstoffspeicher

Reversibles flüssigorganisches Wasserstoffspeichersystem aus einfachen organischen Chemikalien.



12.12.2018
Tanz mit dem Feind
19.11.2018
Kosmische Schlange


09.05.2018
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung