VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße

Neues aus der Forschung

VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße

Meldung vom 22.06.2018

Astronomen haben den bisher genauesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße durchgeführt: Die nahegelegene Galaxie ESO 325-G004 wirkt wie eine starke Gravitationslinse, die das Licht einer fernen Galaxie dahinter verzerrt und einen Einsteinring um ihr Zentrum bildet. Durch den Vergleich der Masse von ESO 325-G004 mit der Krümmung des Weltraums um ihn herum fanden die Astronomen heraus, dass sich die Gravitation auf diesen astronomischen Längenskalen wie von der Allgemeinen Relativitätstheorie vorhergesagt verhält. Das schließt einige alternative Theorien der Schwerkraft aus.


180629-2300_medium.jpg
 
Aufnahme von ESO 325-G004
Thomas E. Collett1, Lindsay J. Oldham, Russell J. Smith, Matthew W. Auger, Kyle B. Westfall, David Bacon, Robert C. Nichol, Karen L. Masters, Kazuya Koyama, Remco van den Bosch
A precise extragalactic test of General Relativity
Science 22 Jun 2018: Vol. 360, Issue 6395, pp. 1342-1346
DOI: 10.1126/science.aao2469


Ein Astronomenteam um Thomas Collett von der Universität Portsmouth in Großbritannien hat mit dem MUSE-Instrument am VLT der ESO zunächst die Masse des ESO 325-G004 bestimmt, indem man die Bewegung der Sterne in dieser nahegelegenen elliptischen Galaxie vermessen hat.

Collett erklärt: "Wir haben zum einen anhand von Daten vom Very Large Telescope in Chile ermittelt, wie schnell sich die Sterne in ESO 325-G004 bewegen - so können wir die Masse der Galaxie ableiten, die diese Sterne auf ihrer Umlaufbahn halten muss."

Aber das Team war auch in der Lage, einen anderen Schwerkraft-Aspekt zu messen: Mit dem NASA/ESA Hubble Space Telescope beobachteten sie einen Einsteinring, der durch das Licht einer fernen Galaxie entsteht, das durch die dazwischenliegende ESO 325-G004 verzerrt wird. Durch die genaue Beobachtung des Rings konnten die Astronomen messen, wie das Licht und damit die Raumzeit durch die riesige Masse von ESO 325-G004 verzerrt wird.

Einsteins Allgemeine Relativitätstheorie sagt voraus, dass massebehaftete Objekte die Raumzeit um sich herum krümmen, wodurch das vorbeiziehende Licht abgelenkt wird. Dies führt zu einem Phänomen, das als Gravitationslinseneffekt bezeichnet wird. Dieser Effekt ist nur bei sehr masserichen Objekten spürbar. Einige hundert starke Gravitationslinsen sind bekannt, aber die meisten sind zu weit entfernt, um ihre Masse genau zu messen. Die Galaxie ESO 325-G004 ist jedoch eine der nächstgelegenen Linsen, nur 450 Millionen Lichtjahre von der Erde entfernt.

Collett fährt fort: "Wir kennen die Masse der Vordergrundgalaxie von MUSE und wir haben die Stärke des Gravitationslinseneffekts mit Hubble gemessen. Wir verglichen dann diese beiden Ansätze, die Stärke der Schwerkraft zu messen - und das Ergebnis war genau das, was die Allgemeine Relativitätstheorie voraussagt, mit einer Unsicherheit von nur 9 Prozent. Dies ist der bisher präziseste Test der Allgemeinen Relativitätstheorie außerhalb der Milchstraße. Und das mit nur einer Galaxie!"

Die Allgemeine Relativitätstheorie wurde mit exquisiter Genauigkeit auf den Skalen des Sonnensystems getestet und die Bewegung der Sterne im Zentrum der Milchstraße wird detailliert untersucht, aber bislang gab es keine genauen Tests auf noch größeren astronomischen Skalen. Die Prüfung der Langstreckeneigenschaften der Schwerkraft ist entscheidend für die Validierung unseres aktuellen kosmologischen Weltbilds.

Diese Erkenntnisse können wichtige Implikationen für Modelle der Gravitation als Alternative zur Allgemeinen Relativitätstheorie haben. Diese alternativen Theorien sagen voraus, dass die Auswirkungen der Schwerkraft auf die Krümmung der Raumzeit "skalenabhängig" sind. Das bedeutet, dass sich die Schwerkraft über astronomische Längenskalen hinweg anders verhalten sollte als auf den kleineren Skalen des Sonnensystems. Collett und sein Team fanden heraus, dass dies unwahrscheinlich ist, es sei denn, diese Unterschiede treten nur auf Längenskalen auf, die größer als 6000 Lichtjahre sind.

"Das Universum ist schon ein erstaunlicher Ort. Es bietet uns Gravitationslinsen, die wir als unsere Labore nutzen können", fügt Bob Nichol von der Universität Portsmouth hinzu. "Es ist hochgradig befriedigend, wenn wir die besten Teleskope der Welt hernehmen, um Einstein herauszufordern, nur um herauszufinden, wie Recht er hatte."


News der letzten 2 Wochen


Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung