Turbulenzen im Kosmos lassen Sterne und Schwarze Löcher wachsen

Neues aus der Forschung

Meldung vom 23.08.2013

Wie sich Sterne und Schwarze Löcher im Universum aus rotierender Materie bilden können, ist eine der großen Fragen in der Astrophysik.


150117-2234_medium.jpg
 
Künstlerische Darstellung einer protoplanetaren Scheibe Pat Rawlings / NASA
O.N. Kirillov, F. Stefani: Extending the range of the inductionless magnetorotational instability, in Physical Review Letters 111 (2013), S. 061103, DOI: 10.1103/PhysRevLett.111.061103

Unstreitig ist: Magnetfelder spielen hier eine entscheidende Rolle. Diese können nach bisheriger Auffassung aber nur wirken, wenn die Materie elektrisch gut leitfähig ist, was aber etwa in protoplanetaren Scheiben zumindest nicht überall der Fall ist. Die aktuelle Veröffentlichung von Physikern aus dem Helmholtz-Zentrum Dresden-Rossendorf in „Physical Review Letters“ zeigt, wie Magnetfelder auch in „toten Zonen“ (dead zones) Turbulenzen hervorrufen können und trägt so wesentlich zum Verständnis der Entstehungsprozesse von kompakten Objekten im Kosmos bei.

Als Johannes Kepler Anfang des 17. Jahrhundert seine Bahngesetze aufstellte, konnte er die bedeutende Rolle kosmischer Magnetfelder für die Entstehung von Planetensystemen nicht erahnen. Heute wissen wir, dass sich ohne Magnetfelder Masse gar nicht in kompakten Gebilden wie Sternen und Schwarzen Löchern konzentrieren könnte. Unser Sonnensystem etwa bildete sich vor 4,6 Milliarden Jahren durch den Einsturz einer gigantischen Gaswolke. Von der Schwerkraft der Wolke wurden die Teilchen in das Zentrum gezogen und so entstand schließlich eine große Scheibe. „Solche Akkretionsscheiben sind aus hydrodynamischer Sicht extrem stabil, weil der Drehimpuls gemäß der Kepler’schen Bahngesetze nach außen hin anwächst. Man spricht hier von der Kepler-Rotation“, erklärt Dr. Frank Stefani vom HZDR. „Um die hohen Wachstumsraten von Sternen und Schwarzen Löchern zu erklären, muss es einen Mechanismus geben, der die rotierende Scheibe destabilisiert und damit gleichzeitig dafür sorgt, dass Masse nach innen und der Drehimpuls nach außen transportiert wird“, führt er weiter aus.

Magnetische Felder können, wie bereits 1959 von Evgenij Velikhov theoretisch vorhergesagt, in einer stabilen Strömung Turbulenz entfachen. Die fundamentale Bedeutung dieser sogenannten Magneto-Rotationsinstabilität (MRI) für die kosmische Strukturbildung wurde durch die Astrophysiker Steven Balbus und John Hawley aber erst 1991 erkannt, wofür sie im September 2013 den mit einer Million Dollar dotierten „Shaw Prize“ für Astronomie erhalten. Damit die MRI funktioniert, müssen die Scheiben aber eine minimale elektrische Leitfähigkeit aufweisen. In Gebieten geringer Leitfähigkeit, wie z.B. in den „toten Zonen“ protoplanetarer Scheiben oder in den weit außen liegenden Gebieten der Akkretionsscheiben um supermassive Schwarze Löcher, ist die Wirkung der MRI numerisch nur schwer nachzuvollziehen und deshalb auch umstritten. Ein neuer theoretischer Erklärungsansatz kommt jetzt von Wissenschaftlern des HDZR, die sich bis dato vor allem mit der experimentellen Untersuchung der MRI beschäftigt hatten.

Wettstreit zwischen Physikern und Astrophysikern

Wenn man versucht, die MRI in einem Flüssigmetall-Experiment mit einem ausschließlich in vertikaler Richtung angelegten Magnetfeld – so die reine astrophysikalische Lehre – nachzustellen, dann muss dieses Magnetfeld sehr stark sein. Da gleichzeitig auch die Rotationsgeschwindigkeit sehr hoch sein muss, sind derartige Experimente extrem aufwendig und bisher noch nicht von Erfolg gekrönt gewesen. Mit einem Trick war es Dr. Stefani zusammen mit seinen Kollegen vom HZDR sowie vom Leibniz-Institut für Astrophysik in Potsdam im Jahr 2005 erstmals gelungen, den Himmelsprozess im Labor nachzustellen. Indem sie das senkrechte durch ein kreisförmiges Magnetfeld ergänzten, konnten sie die MRI schon bei wesentlich geringeren Magnetfeldstärken und Rotationsgeschwindigkeiten beobachten. Ein Schönheitsfehler dieser „helikalen MRI“, so Steven Balbus und Hantao Ji in der aktuellen Augustausgabe der Zeitschrift „Physics Today“, ist die Tatsache, dass sie nur relativ steil nach außen abfallende Rotationsprofile zu destabilisieren vermag, zu denen die Kepler-Rotation zunächst einmal nicht gehört.

Magnetfelder und Strömungen schaukeln sich gegenseitig auf

Diesem gewichtigen Argument aus der Astrophysik setzen die HZDR-Wissenschaftler nun ihre neuesten Erkenntnisse entgegen. Die Berechnungen von Dr. Oleg Kirillov und Dr. Frank Stefani zeigen, dass die helikale MRI sehr wohl für Kepler‘sche Rotationsprofile anwendbar ist, wenn nur das kreisförmige Magnetfeld nicht komplett von außen, sondern wenigstens zu einem kleinen Teil auch in der Akkretionsscheibe selbst erzeugt wird. „Dies ist in der Tat ein viel realistischeres Szenario. Im Extremfall, dass gar kein vertikales Feld vorhanden ist, haben wir es mit einer Henne-Ei-Problematik zu tun. Ein kreisförmiges Magnetfeld destabilisiert die Scheibe und die entstehende Turbulenz generiert Komponenten von vertikalen Magnetfeldern. Die wiederum reproduzieren durch die besondere Form der Rotationsbewegung der Scheibe das kreisförmige Magnetfeld.“ Ob mit oder ohne vertikales Magnetfeld: Die aktuellen Berechnungen zeigen, dass die MRI durchaus auch in Gebieten geringer Leitfähigkeit wie etwa in den „toten Zonen“ möglich sein kann, in denen Astrophysiker sie bisher nicht vermutet hatten.

Motiviert wurden die HZDR-Wissenschaftler durch ihre langjährige Erfahrung mit Laborexperimenten zu kosmischen Magnetfeldern, angefangen bei einem Modell des Erddynamos über die Magneto-Rotationsinstabilität bis hin zur Tayler-Instabilität. Letztere wird von Astrophysikern unter anderem in Bezug auf kosmische Jets und die Entstehung von Neutronensternen diskutiert, muss aber etwa auch bei der Konstruktion großer Flüssigmetall-Batterien beachtet werden. Derzeit planen die Wissenschaftler ein großes Experiment mit flüssigem Natrium, das sie im Rahmen des DRESDYN-Projektes in den nächsten Jahren realisieren wollen. „Wenn wir dieses Experiment, das erstmalig die MRI mit der Tayler-Instabilität kombiniert, zum Laufen bringen, können wir das Zusammenwirken von unterschiedlichen magnetischen Phänomenen im Kosmos noch viel besser verstehen“, freut sich Stefani. Egal, wer im freundschaftlichen Wettstreit die Nase vorne hat, die experimentellen Physiker aus dem Helmholtz-Zentrum Dresden-Rossendorf oder die theoretischen Astrophysiker aus Amerika, der Drehimpuls-Transport in der Astrophysik und im Labor wird weiter ein spannendes Thema bleiben.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung