Tief ins Herz der Milchstraße

Tief ins Herz der Milchstraße

Physik-News vom 03.12.2015
 

Ein internationales Forscherteam unter Beteiligung des Max-Planck-Instituts für Radioastronomie hat Radioteleskope zu einem globalen Netzwerk verbunden, um so die Magnetfeldstruktur in der unmittelbaren Umgebung des zentralen Schwarzen Lochs in unserer Milchstraße zu erfassen.

Die Beobachtungen wurden im Rahmen des Projekts “Event-Horizon-Teleskop” durchgeführt, das ein Netzwerk von Radioteleskopen bei Millimeter-Wellenlängen miteinander verbindet. Die Messungen zeigen nicht nur Details in der polarisierten Radiostrahlung bei hoher Winkelauflösung, sondern auch Fluktuationen im Magnetfeld auf kurzen Zeitskalen.


Künstlerische Darstellung des Schwarzen Lochs im Zentrum unserer Milchstraße.

Publikation:


Michael D. Johnson et al.
Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*
Science, Ausgabe 4. Dezember 2015

DOI: 10.1126/science.aac7087



Die meisten Menschen stellen sich Schwarze Löcher vor wie gewaltige Staubsauger, die alles verschlucken, was ihnen zu nahe kommt. Tatsächlich könnte man die supermassereichen Schwarzen Löcher, die in Zentren vieler Galaxien zu finden sind, eher als kosmische Kraftwerke betrachten, die die Energie des einfallenden Materials in intensive Strahlung umwandeln, die das Gesamtlicht aller umgebenden Sterne bei weitem übertrifft. Die Rotation eines solchen Schwarzen Lochs erzeugt energiereiche Materiestrahlen oder Jets, die Tausende von Lichtjahren nach außen reichen und dabei die Galaxien komplett umformen können. Es wird angenommen, dass die zentralen kosmischen Kraftwerke in den Galaxien durch Magnetfelder angetrieben werden.

Zum ersten Mal ist es nun gelungen, Magnetfelder direkt am Ereignishorizont des Schwarzen Lochs im Zentrum unserer Milchstraße zu beobachten.

„Es ist sehr wichtig, dass wir die Funktionsweise dieser Magnetfelder verstehen. Niemandem sonst ist es bis jetzt gelungen, die Magnetfeldstruktur so nahe am Ereignishorizont eines Schwarzen Lochs abzubilden“, sagt Michael Johnson vom Harvard-Smithsonian Center for Astrophysics (CfA), der Erstautor der Veröffentlichung in der Fachzeitschrift „Science“, Ausgabe vom 4. Dezember 2015.

“Die Existenz solcher Magnetfelder wurde seit langem vorhergesagt, aber keiner hat sie bis jetzt nachweisen können. Unsere Daten bilden ein solides Beobachtungsfundament zur Untermauerung von Jahrzehnten theoretischer Arbeit“, fügt Shep Doeleman vom CfA, der Leiter des Forschungsprojekts, hinzu.

Der Nachweis gelang mit dem Event-Horizon-Teleskop (EHT), einem globalen Netzwerk von Radioteleskopen, die miteinander verbunden ein gewaltiges Teleskop von fast Erdgröße darstellen. Je größer ein Teleskop, desto schärfer die damit gewonnenen Bilder; mit dem EHT wird die Auflösung von Strukturen von nur noch 15 Mikrobogensekunden möglich (eine Bogensekunde ist der 3600ste Teil eines Grades, und 15 Mikrobogensekunden entsprechen der Größe eines Golfballs auf dem Mond).

Diese hohe Auflösung ist deswegen erforderlich, weil es sich bei Schwarzen Löchern um die kompaktesten Objekte im Universum handelt. Das zentrale Schware Loch in unserer Milchstraße trägt die Bezeichnung Sagittarius A** (oder Sgr A*, ausgesprochen “A-Stern”) und es wiegt ca. vier Millionen mal mehr als unsere Sonne. Seine „Grenze“ (der sogenannte „Ereignishorizont“) ist jedoch kleiner als die Umlaufbahn von Merkur um die Sonne. Da die Entfernung von uns rund 25000 Lichtjahre beträgt, entspricht die scheinbare Ausdehnung des Ereignishorizonts gerade einmal 10 Mikrobogensekunden – das ist unglaublich wenig. Glücklicherweise führt die intensive Schwerkraft des Schwarzen Lochs zur Krümmung des Lichts und damit zur Vergrößerung des Ereignishorizonts auf ca. 50 Mikrobogensekunden, die mit dem EHT leicht aufgelöst werden können.

Mit dem Event-Horizon-Teleskop werden Beobachtungen bei einer Wellenlänge von 1,3 mm durchgeführt. Das Forschungsteam konnte auch die lineare Polarisation der aufgenommenen Strahlung messen. Sonnenlicht wird z.B. durch Reflektion linear polarisiert. Das wird bei Sonnenbrillen ausgenutzt, bei denen die Polarisation der Gläser zu reduzierter Helligkeit und verminderter Blendung führt. Bei der Radioquelle Sgr A* wird polarisierte Strahlung durch die Spiralbewegung von Elektronen entlang von magnetischen Feldlinien erzeugt. Dadurch wird in der polarisierten Radiostrahlung die Struktur des Magnetfeldes abgebildet.

Sgr A* ist umgeben von einer Akkretionsscheibe aus Materie, die um das zentrale Schwarze Loch rotiert. Das Forschungsteam hat herausgefunden, dass die Magnetfelder in einigen Bereichen nahe der Zentralquelle eine sehr chaotische Struktur zeigen, mit verwirbelten Schleifen und Windungen in der Art von miteinander verflochtenen Spaghetti. Im Gegensatz dazu zeigen andere Bereiche eine eher reguläre Struktur, möglicherweise gerade in den Bereichen, in denen Materiestrahlen (Jets) erzeugt werden.

Darüber hinaus konnten Fluktuationen des Magnetfelds auf Zeitskalen von nur ca. 15 Minuten nachgewiesen werden.

“Unsere Messunmgen zeigen, dass das Zentrum unserer Milchstraße ein viel dynamischerer Ort ist als wir uns das bis jetzt vorstellen konnten”, sagt Michael Johnson. „Die Magnetfelder tanzen förmlich über den gesamten Bereich.“

Für die Beobachtungen wurden astronomische Einrichtungen an drei verschiedenen Orten eingesetzt: das Submillimeter-Array (SMA) und das James-Clerk-Maxwell-Teleskop (JCMT, beide auf dem Mauna Kea in Hawaii), das Submillimeter-Teleskop (SMT) auf dem Mt. Graham in Arizona, sowie das „Combined Array for Research in Millimeter-wave Astronomy“ (CARMA) nahe Bishop in Kalifornien.

„Durch die weitere Zunahme von Daten wird das EHT-Projekt eine immer bessere Winkelauflösung erreichen, mit dem ultimativen Ziel der direkten Abbildung des Ereignishorizonts eines Schwarzen Lochs“, sagt Anton Zensus, Direktor am MPIfR und Leiter der Forschungsabteilung „Radioastronomie/VLBI“ am Institut.

„Die Verbindung mit zusätzlichen großen Millimeter-Teleskopen wie den beiden IRAM-Teleskopen in Europa sowie ALMA und APEX in Chile wird die Abbildungsqualitäten des Systems nochmals steigern und es uns ermöglichen, Änderungen in der Polarisation zu beobachten, verursacht durch Materie, die um das Schwarze Loch wirbelt“, erklärt Thomas Krichbaum, ebenfalls vom MPIfR.

„Der einzige Weg, ein erdumspannendes Teleskop zu realisieren, ist der Aufbau eines globalen Wissenschaftlerteams, die alle zusammen an diesem Projekt arbeiten. Damit kommt unser EHT-Team einen wichtigen Schritt näher an die Lösung eines zentralen Paradoxons in der Astronomie: warum sind die Schwarzen Löcher so hell?“ schließt Shep Doeleman.


Diese Newsmeldung wurde mit Material des Informationsdienstes der Wissenschaft (idw) erstellt


Die News der letzten 14 Tage 1 Meldungen







warte

warte

warte

warte

warte

warte

warte

warte

warte

warte