Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Physik-News vom 20.06.2018

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer Dichte. In den Faserkern koppeln die Jenaer Forscher ultraschnelle Pulse polarisierten Laserlichts ein. Da die optische Dichte von Kohlenstoffdisulfid und dadurch die Geschwindigkeit der Lichtausbreitung im Kern von der Intensität des eingestrahlten Lichts abhängt, brechen die Pulse in eine Vielzahl von Solitonen, Lichtpakete verschiedener Wellenlänge, auf. Sie bilden das für das menschliche Auge nicht sichtbare, sehr breite Lichtspektrum (Superkontinuum) im nahen bis mittleren Infrarotbereich (1,2 bis 3,0 µm Wellenlänge).

Vergangenes Jahr lieferten die Forscherinnen und Forscher bereits experimentelle Beweise für eine neue Dynamik der Solitonen, die aufgrund der nicht-linearen optischen Eigenschaften des Flüssigkerns entsteht. Nun ist es ihnen gelungen die Ausbreitung der Wellenpakete und die Lichterzeugung durch Temperatur- und Druckunterschiede entlang der Faser zu kontrollieren. Damit realisierten sie neue, stabile Superkontinuum-Lichtquellen mit flexibel einstellbarer spektraler Bandbreite.


Schematische Darstellung des temperaturgesteuerten Superkontinuums

Publikation:


Mario Chemnitz, Ramona Scheibinger, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Sebastian Pumpe, Jens Kobelke, Jens Limpert, Andreas Tünnermann und Markus A. Schmidt
Thermodynamic control of soliton dynamics in liquid-core fibers
Vol. 5, Issue 6, pp. 695-703 (2018)

DOI: 10.1364/OPTICA.5.000695



Flexibles Spektrum für die medizinische Bildgebung

„Bisher steuerte man die Bandbreite des Lichtspektrums in Faserlasern beispielsweise über die Größe des Kerns aus Spezialglas. Nach der Herstellung der Fasern ist man jedoch auf einen spektralen Bereich festgelegt. Flüssigkernfasern mit ihren einzigartigen thermodynamischen Eigenschaften ermöglichen es uns, die Signalwellenlängen nach Bedarf anzupassen oder gar ein gleichmäßiges Spektrum zu erzeugen. Das ist für Bildgebungsverfahren in der medizinischen Diagnostik interessant“, erklärt Mario Chemnitz, Doktorand am Leibniz-IPHT und Erstautor des Artikels.

Um das volle Potential der Faserlaser auszuschöpfen, untersuchte das Jenaer Forscher-Team vom Leibniz-IPHT, der Friedrich-Schiller-Universität, des Helmholtz-Instituts und des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik den Einfluss von Temperatur und Druck auf die Solitonen-Aufspaltung im Flüssigkern der Faser.



„Die Computersimulationen und Experimente haben bewiesen, dass die Wellenlänge des ursprünglichen Solitons über den gesamten Temperaturbereich konstant bleibt. Die Wellenpakete, die aus dessen resonanter Abstrahlung hervorgehen, zeigen allerdings eine temperaturabhängige spektrale Verschiebung. Mit nur 13 Kelvin Temperaturunterschied können wir die Bandbreite der Abstrahlung um mehrere hundert Nanometer verschieben“, so Chemnitz weiter. Das Ziel der Forscherinnen und Forscher ist es, weitere geeignete Flüssigkeiten für optische Fasern zu untersuchen und so bislang unzugängliche Spektralbereiche im mittleren Infrarot zu erschließen.

Diese Newsmeldung wurde mit Material von idw erstellt



   71 Meldungen
16.09.2020
Quantenoptik
Flüssiges Wasser bei 170 Grad Celsius - Röntgenlaser enthüllt anomale Dynamik bei ultraschnellem Erhitzen
Mit dem europäischen Röntgenlaser European XFEL hat ein Forschungsteam untersucht, wie sich Wasser unter Extrembedingungen aufheizt.
15.09.2020
Quantenoptik
Einzelphotonen vom Siliziumchip: Forschungsteam entwickelt neuartige Quelle für Quanten-Lichtteilchen
Die Quantentechnologie gilt als überaus zukunftsträchtig: Quantencomputer sollen in einigen Jahren Datenbanksuchen, KI-Systeme und Simulationsrechnungen revolutionieren.
16.07.2020
Quantenoptik - Teilchenphysik
Der leichteste Spiegel der Welt
Physiker haben einen optischen Spiegel entwickelt, der aus nur wenigen hundert Atomen besteht. Es ist der leichteste Spiegel der Welt und der leichteste überhaupt vorstellbare.
14.07.2020
Elektrodynamik - Quantenoptik - Teilchenphysik
Hammer-on – wie man Atome schneller schwingen lässt
Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben.
13.07.2020
Quantenoptik - Teilchenphysik
Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt
Verschmelzung physikalischer und chemischer Methoden für die optische Spektroskopie superschwerer Elemente.
01.07.2020
Quantenoptik - Teilchenphysik
In das Innere der atomaren Materie blicken: Pikoskopie
Wissenschaftlern aus den Arbeitsgruppen von Professor E.
24.04.2020
Elektrodynamik - Quantenoptik
Vermessung der Dynamik von Skyrmionen aus Licht auf ultraglatten Goldplättchen
Im Zentrum eines Wirbels bestehen sehr hohe Drehgeschwindigkeiten, die bei großen Tornados gewaltige Zerstörungskräfte entfalten können.
06.04.2020
Elektrodynamik - Quantenoptik
Wenn Ionen an ihrem Käfig rütteln
In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung.
02.04.2020
Quantenoptik
Unsichtbares sichtbar machen
Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern.
02.04.2020
Festkörperphysik - Quantenoptik
Wie man Schmutz einfach entfernt
Schmutz ist nicht immer gleich Schmutz.
27.03.2020
Quantenoptik
Physiker entwickeln neue Photonenquelle für abhörsichere Kommunikation
Ein internationales Team unter Beteiligung von Prof.
24.03.2020
Quantenoptik
Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten