Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Neues aus der Forschung

Meldung vom 20.06.2018

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.


180629-2154_medium.jpg
Mario Chemnitz, Ramona Scheibinger, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Sebastian Pumpe, Jens Kobelke, Jens Limpert, Andreas Tünnermann und Markus A. Schmidt
Thermodynamic control of soliton dynamics in liquid-core fibers
Vol. 5, Issue 6, pp. 695-703 (2018)
DOI: 10.1364/OPTICA.5.000695

 
Schematische Darstellung des temperaturgesteuerten Superkontinuums

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer Dichte. In den Faserkern koppeln die Jenaer Forscher ultraschnelle Pulse polarisierten Laserlichts ein. Da die optische Dichte von Kohlenstoffdisulfid und dadurch die Geschwindigkeit der Lichtausbreitung im Kern von der Intensität des eingestrahlten Lichts abhängt, brechen die Pulse in eine Vielzahl von Solitonen, Lichtpakete verschiedener Wellenlänge, auf. Sie bilden das für das menschliche Auge nicht sichtbare, sehr breite Lichtspektrum (Superkontinuum) im nahen bis mittleren Infrarotbereich (1,2 bis 3,0 µm Wellenlänge).

Vergangenes Jahr lieferten die Forscherinnen und Forscher bereits experimentelle Beweise für eine neue Dynamik der Solitonen, die aufgrund der nicht-linearen optischen Eigenschaften des Flüssigkerns entsteht. Nun ist es ihnen gelungen die Ausbreitung der Wellenpakete und die Lichterzeugung durch Temperatur- und Druckunterschiede entlang der Faser zu kontrollieren. Damit realisierten sie neue, stabile Superkontinuum-Lichtquellen mit flexibel einstellbarer spektraler Bandbreite.

Flexibles Spektrum für die medizinische Bildgebung

„Bisher steuerte man die Bandbreite des Lichtspektrums in Faserlasern beispielsweise über die Größe des Kerns aus Spezialglas. Nach der Herstellung der Fasern ist man jedoch auf einen spektralen Bereich festgelegt. Flüssigkernfasern mit ihren einzigartigen thermodynamischen Eigenschaften ermöglichen es uns, die Signalwellenlängen nach Bedarf anzupassen oder gar ein gleichmäßiges Spektrum zu erzeugen. Das ist für Bildgebungsverfahren in der medizinischen Diagnostik interessant“, erklärt Mario Chemnitz, Doktorand am Leibniz-IPHT und Erstautor des Artikels.

Um das volle Potential der Faserlaser auszuschöpfen, untersuchte das Jenaer Forscher-Team vom Leibniz-IPHT, der Friedrich-Schiller-Universität, des Helmholtz-Instituts und des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik den Einfluss von Temperatur und Druck auf die Solitonen-Aufspaltung im Flüssigkern der Faser.

„Die Computersimulationen und Experimente haben bewiesen, dass die Wellenlänge des ursprünglichen Solitons über den gesamten Temperaturbereich konstant bleibt. Die Wellenpakete, die aus dessen resonanter Abstrahlung hervorgehen, zeigen allerdings eine temperaturabhängige spektrale Verschiebung. Mit nur 13 Kelvin Temperaturunterschied können wir die Bandbreite der Abstrahlung um mehrere hundert Nanometer verschieben“, so Chemnitz weiter. Das Ziel der Forscherinnen und Forscher ist es, weitere geeignete Flüssigkeiten für optische Fasern zu untersuchen und so bislang unzugängliche Spektralbereiche im mittleren Infrarot zu erschließen.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung