Studie: Atomare Verunreinigung ähnlich wie bei Edelsteinen dient als Quanten-Informationsspeicher

Neues aus der Forschung

Meldung vom 01.10.2018

Für die Farben von Edelsteinen oder die Leistungsfähigkeit moderner Halbleiter sind Verunreinigungen in Materialien ursächlich. Ähnliches gilt für Quantensysteme, wo es aber kaum erforscht ist. Erstmals konnten Kaiserslauterer Physiker kontrolliert einzelne Verunreinigung aus Cäsium-Atomen in einem ultrakalten Quantengas aus Rubidium-Atomen einbringen. Sie haben beobachtet, wie die Verunreinigungen quantenmechanische Anregungen (Spin) mit dem Gas ausgetauscht haben. Zudem haben sie gezeigt, dass Cäsium-Atome Quanten-Information speichern können. Dies war bislang nicht möglich. Die Studie ist in der renommierten Fachzeitschrift „Physical Review Letters“ erschienen.


181003-1611_medium.jpg
 
Die beiden Physiker Professor Dr. Artur Widera (rechts) und sein Doktorand Felix Schmidt erforschen Quantensysteme.
Felix Schmidt, Daniel Mayer, Quentin Bouton, Daniel Adam, Tobias Lausch, Nicolas Spethmann, and Artur Widera
Quantum spin dynamics of individual neutral impurities coupled to a Bose-Einstein condensate
Phys. Rev. Lett. 121, 130403
DOI: 10.1103/PhysRevLett.121.130403


Verunreinigungen aus einzelnen Atomen wie bei Edelsteinen gibt es auch bei anderen Materialien und Werkstoffen. Auch in der Quantenphysik sind sie für verschiedene Effekte verantwortlich und daher für Experimente interessant. An der TUK haben Physiker um Professor Dr. Artur Widera und seinen Doktoranden Felix Schmidt nun erstmals beobachtet, wie sich solche Verunreinigungen in einem Bose-Einstein-Kondensat bei Rubidium-Atomen verhalten.

„Damit bezeichnet man in der Physik einen Zustand von Materie, der vergleichbar mit flüssigen und gasförmigen Zuständen ist. Allerdings ist ein solches Kondensat ein perfekter quantenmechanischer Zustand, der sich wie eine Welle verhält“, sagt Professor Widera, der das Lehrgebiet Individual Quantum Systems leitet. Für Physiker sei das Bose-Einstein-Kondensat ein beliebtes Modell, um Quanten-Effekte zu untersuchen – ähnlich wie die Fruchtfliege Drosophila in der Biologie und Medizin als Modellorganismus dient, um etwa genetische Fragestellungen zu beantworten.

In ihrer aktuellen Studie haben die Kaiserslauterer Physiker eine solche Verunreinigung in Quantengas untersucht. Dabei kühlen sie es auf Temperaturen nahe des absoluten Nullpunkts von -273,15° Celsius ab. „Auf diese Weise können wir ein quantenmechanisches System kontrollieren“, sagt Erstautor Felix Schmidt. Als Verunreinigung haben die Forscher Cäsium-Atome eingesetzt. Auf rund 10.000 Rubidium-Atome sind dabei fünf bis zehn Cäsium-Atome gekommen. „Das System lässt sich unter einem Mikroskop untersuchen. Das ultrakalte Gas hat eine Größe von zehn Mikrometern“, fährt der Doktorand fort. So haben die Forscher einzelne Verunreinigungen lokalisiert und die Änderung ihrer Struktur, des sogenannten Spins, durch die Wechselwirkung mit dem Quantengas beobachtet. „Bislang war es nicht möglich, einzelne Atome in einem solchen Gas zu beobachten. Es freut uns, dass es uns im Experiment gelungen ist“, sagt Schmidt.

Weiterhin haben die Forscher überprüft, ob sich die Cäsium-Atome als Informationsspeicher nutzen und gleichzeitig im Quantengas kühlen lassen. „Damit Atome Information speichern, muss ihr elektronischer Zustand erhalten bleiben“, erläutert Widera. „Da es aber im Kondensat mit den anderen Atomen zu Wechselwirkungen kommt, besteht das Risiko, dass sie durch Stöße die empfindlichen Informationen verlieren.“ Den Forschern ist es nun erstmals gelungen, die Atome stark in dem Quantengas zu kühlen, ohne dass Quanten-Informationen verloren gehen.

„Das Modell aus einzelnen Verunreinigungen in einem ultrakalten Gas realisiert ein Paradigma der Quantenphysik“, sagt Professor Widera. „Es kann als Ausgangspunkt für eine Vielzahl anderer Quanten-Experimente dienen.“ Insbesondere helfen die Erkenntnisse der Kaiserslauterer Wissenschaftler, besser zu verstehen, was auf der Quantenebene geschieht. Dies könnte zum Beispiel künftig eine Rolle spielen, um etwa Supraleiter zu verstehen und neue Materialien zu entwickeln. Supraleiter könnten Strom ohne großen Energieverlust bei normaler Umgebungstemperatur über weite Strecken transportieren. Bislang ist dies nur bei Temperaturen weit unter dem Gefrierpunkt möglich.

Widera und sein Doktorand Felix Schmidt forschen zu Quantensystemen. Die Physiker arbeiten dabei auch am Landesforschungszentrum Optik und Materialwissenschaften (OPTIMAS) interdisziplinär mit Arbeitsgruppen aus Chemie, Maschinenbau und Verfahrenstechnik sowie Elektrotechnik und Informationstechnik zusammen, um Grundlagen in die Anwendung zu überführen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 07.12.2018

Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bis ...

Meldung vom 07.12.2018

Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert und kann nun Photokathoden mit hoher Q ...

Meldung vom 06.12.2018

Universität Göttingen erforscht in internationalem Team Helium-Schweif eines Exoplaneten

Ein internationales Forscherteam unter Beteiligung des Instituts für Astrophysik der Universität Göttingen ...

Meldung vom 06.12.2018

Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichti ...

Meldung vom 05.12.2018

Lichtblitze aus dem Plasmaspiegel

Physiker des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians- Universität München und der Um ...

Meldung vom 05.12.2018

Zweite Chance für Galileo-Satelliten

Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre v ...

Meldung vom 03.12.2018

Die Kraft des Vakuums

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am ...

Meldung vom 30.11.2018

Von der Natur lernen

Designregeln für belastbare Stromnetze und biologische Sensornetze.

Meldung vom 28.11.2018

Ein Jet von Atomen – Erste Linse für extrem ultraviolettes Licht entwickelt

Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben die erste ...

Meldung vom 28.11.2018

Supermikroskop beobachtet Lithium-Atome auf Wanderschaft - Einblicke in Minibatterie aus Graphen

Man kann es schlicht und einfach eine Sensation nennen, was hier Wissenschaftlern aus Stuttgart, Ulm und Dresd ...

Meldung vom 26.11.2018

Erfolgreiche zweite Experimentrunde mit Wendelstein 7-X

Die von Juli bis November an der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) ...

Meldung vom 26.11.2018

Thermoelektrische Kühlung wird fit für die Mikrotechnologie

Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung haben die Herstellung thermoele ...

Meldung vom 26.11.2018

Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen

Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu r ...

Meldung vom 23.11.2018

Auf dem Weg zum Beschleuniger auf dem Mikrochip

Elektrotechniker am Fachgebiet Beschleunigerphysik der TU Darmstadt entwickeln ein Konzept eines lasergetriebe ...

Meldung vom 23.11.2018

Ultrakalter „Quantencocktail“

Die experimentelle Untersuchung von ultrakalter Quantenmaterie ermöglicht die Erforschung von quantenmechanis ...


24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung