Stringtheorie: Ist Dunkle Energie überhaupt erlaubt?

Neues aus der Forschung

Meldung vom 08.10.2018

Eine neue Vermutung scheint die Stringtheorie aus den Angeln zu heben. Timm Wrase von der TU Wien veröffentlichte dazu nun vieldiskutierte Ergebnisse.


181012-1655_medium.jpg
 
Timm Wrase
F. Denef, A. Hebecker, T. Wrase
de Sitter swampland conjecture and the Higgs potential
Phys. Rev. D 98, 086004
DOI: https://doi.org/10.1103/PhysRevD.98.086004


In der Stringtheorie könnte ein Umbruch bevorstehen. Im Juni veröffentlichte ein Team von Stringtheoretikern aus Harvard und Caltech eine revolutionär klingende Vermutung: Die Stringtheorie soll mit der Existenz von „Dunkler Energie“ wie sie bisher verstanden wurde grundsätzlich unvereinbar sein – doch nur mit „Dunkler Energie“ kann man heute die beschleunigte Expansion des Universums erklären.

Timm Wrase von der TU Wien erkannte rasch, dass an dieser Vermutung etwas nicht stimmen kann: Es dürfte sonst nämlich auch kein Higgs-Teilchen geben. Seine Berechnungen, die er zusammen mit Theoretikern von der Columbia University in New York und der Universität Heidelberg durchführte, wurden nun in „Physical Review“ publiziert. Die plötzlich entfachte Diskussion über Strings und Dunkle Energie soll nun der Forschung einen neuen Ruck verleihen, hofft Wrase.

Die Theorie für alles?

In die Stringtheorie werden große Hoffnungen gesetzt: Sie soll erklären, wie Gravitation mit Quantenphysik zusammenhängt, und wie die Naturgesetze zu verstehen sind, mit denen man die gesamte physikalische Welt beschreiben kann, von den kleinsten Teilchen bis zur größten Struktur des Kosmos.

Oft wird des Stringtheorie vorgeworfen, bloß mathematisch-abstrakte Ergebnisse zu liefern und zu wenige Vorhersagen zu treffen, die sich im Experiment tatsächlich untersuchen lassen. Nun allerdings diskutiert die Stringtheorie-Community auf der ganzen Welt eine heiße Frage, die mit kosmischen Experimenten eng zusammenhängt: Es geht dabei um nichts Geringeres als die Expansion des Universums. 2011 wurde der Physik-Nobelpreis für die Entdeckung vergeben, dass das Universum nicht nur ständig größer wird, sondern dass sich diese Expansion auch noch ständig beschleunigt.

Dieses Phänomen lässt sich nur erklären, wenn man eine zusätzliche, bisher unbekannte „Dunkle Energie“ annimmt. Diese Idee stammt ursprünglich von Albert Einstein, der sie in seiner Allgemeinen Relativitätstheorie als „kosmologische Konstante“ zu seinen Gleichungen hinzufügte. Einstein wollte damit eigentlich ein nichtexpandierendes Universum konstruieren. Als Hubble 1929 dann feststellte, dass sich das Universum ausdehnt, bezeichnete Einstein diese Modifikation seiner Gleichungen als „größte Eselei“ seines Lebens. Doch mit der Entdeckung, dass sich die Expansion beschleunigt, wurde die kosmologische Konstante als Dunkle Energie wieder in das gegenwärtige Standardmodell der Kosmologie aufgenommen.

Wie ein Apfel in der Obstschüssel

„Man dachte lange, dass sich eine solche Dunkle Energie gut in das Konzept der Stringtheorie einbauen lässt“, sagt Timm Wrase vom Institut für Theoretische Physik der TU Wien. Die Stringtheorie geht davon aus, dass es zusätzliche, bisher unbekannte Teilchensorten gibt, die sich in Form von Feldern beschreiben lassen.

Diese Felder haben einen Zustand minimaler Energie – ähnlich wie ein Apfel, der in einer Schüssel liegt. Er wird immer ganz unten, am tiefsten Punkt der Schüssel liegen. Überall sonst wäre seine Energie höher, man muss Energie aufwenden, um ihn vom tiefsten Punkt zu entfernen. Das heißt aber nicht, dass der Apfel am tiefsten Punkt gar keine Energie hat: Man kann die Schüssel mit dem Apfel auf den Boden stellen, oder oben auf den Tisch – dort hat der Apfel zwar mehr Energie, kann sich aber trotzdem nicht bewegen, weil er sich in seiner Schüssel immer noch lokal im Zustand minimaler Energie befindet.

„So ähnlich lassen sich in der Stringtheorie auch Felder beschreiben, mit denen sich die dunkle Energie erklären ließe – sie befinden sich in einem lokalen Energie-Minimum, aber die Energie hat trotzdem einen Wert, der größer als null ist“, erklärt Timm Wrase. „So würden diese Felder die sogenannte dunkle Energie liefern, mit der man die beschleunigte Expansion des Universums erklären kann.“

Doch Cumrun Vafa von der Harvard University, einer der renommiertesten Stringtheoretiker der Welt, veröffentlichte am 25. Juni einen Artikel mit großer Sprengkraft: Er stellte darin die Vermutung auf, dass solche „schüsselförmigen“ Felder mit positiver Energie in der Stringtheorie gar nicht möglich sind.

Das Higgs-Feld – ein Widerspruch

Timm Wrase von der TU Wien erkannte rasch die Tragweite dieser Behauptung: „Wenn das stimmt, kann es die beschleunigte Expansion, wie wir sie uns bisher vorgestellt haben nicht geben“, sagt er. „Es müsste dann ein Feld mit ganz anderen Eigenschaften geben, vergleichbar mit einer leicht abschüssigen Ebene, auf der eine Kugel nach unten rollt und dabei potenzielle Energie verliert.“ Dann würde sich der Betrag der „dunklen Energie“ im Lauf der Zeit ändern und die beschleunigte Expansion des Universums käme möglicherweise eines Tages zum Stillstand. Die Gravitation könnte dann die gesamte Materie wieder zusammenziehen und an einem Punkt versammeln, ähnlich wie zum Zeitpunkt des Urknalls.

Doch Timm Wrase, der sich schon in seiner Doktorarbeit mit ähnlichen Fragen beschäftigt hatte, stellte fest, dass dieser Einwand auch nicht der Weisheit letzter Schluss sein kann. „Die Vermutung von Cumrun Vafa, die bestimmte Arten von Feldern verbietet, würde nämlich auch Dinge verbieten, von denen wir wissen, dass es sie gibt“, erklärt er.

Wrase konnte zeigen, dass auch das Higgs-Feld Eigenschaften hat, die durch Vafas Vermutung eigentlich verboten sein sollten – und das Higgs-Feld gilt als experimentell gesicherte Tatsache, für seinen Nachweis wurde 2013 der Physik-Nobelpreis vergeben. Wrase stellte seine Ergebnisse auf der Online-Plattform Arxiv zur Verfügung, seither wird in der Stringtheorie-Community heftig darüber diskutiert. Nun wurde die Arbeit geprüft und im Journal „Physical Review“ publiziert.

„Diese Kontroverse ist eine gute Sache für die Stringtheorie“, ist Timm Wrase überzeugt. „Plötzlich haben viele Leute ganz neue Ideen, über die bisher einfach noch niemand nachgedacht hatte.“ Wrase untersucht nun mit seinem Team, welche Felder die Stringtheorie zulässt und an welchen Punkten sie gegen Vafas Vermutung verstoßen. „Vielleicht führt uns das zu spannenden neuen Erkenntnissen über die Natur der dunklen Energie – das wäre ein großer Erfolg“, hofft Wrase.

Die Hypothesen, die dabei entstehen werden sich (zumindest teilweise) schon bald experimentell überprüfen lassen: Die beschleunigte Expansion des Universums wird in den nächsten Jahren nämlich genauer untersucht als je zuvor.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung