Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen

Neues aus der Forschung

Meldung vom 26.11.2018

Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu realisieren: Es basiert auf Molekülen, die sich selbstorganisierend anordnen und eine Monolage bilden. Die Studie wurde in Advanced Energy Materials publiziert und ist auf dem Front-Cover des Journals erschienen.


181130-1737_medium.jpg
 
Das Molekül organisiert sich entlang der Oberfläche der Elektroden, bis eine geschlossene Monolage entsteht.
Artiom Magomedov, Amran Al‐Ashouri, Ernestas Kasparavičius, Simona Strazdaite, Gediminas Niaura, Marko Jošt, Tadas Malinauskas, Steve Albrecht and Vytautas Getautis
Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells
Advanced Energy Materials 2018
DOI: https://doi.org/10.1002/aenm.201801892


In den letzten Jahren konnten Solarzellen auf der Basis von Metall-Halid Perowskiten einen einzigartigen Anstieg im Wirkungsgrad erzielen. Diese Materialien versprechen kostengünstige und flexible Solarzellen und können mit konventionellen PV-Materialien wie Silizium zu besonders effizienten Tandem-Solarzellen kombiniert werden. Ein wichtiger Schritt zur Industriereife ist die Entwicklung effizienter elektrischer Kontaktschichten, welche die Abscheidung von Perowskit-Schichten auf unterschiedlichen Substraten erlauben.

Moleküle bilden von selbst eine Monolage

Nun hat ein Team um den HZB-Physiker Dr. Steve Albrecht in Zusammenarbeit mit dem ehemaligen DAAD-Austauschstudenten Artiom Magomedov von der Kaunas University of Technology (KTU), Litauen, ein neuartiges selbstorganisierendes Monolagen-Molekül (engl. self-assembled monolayer, SAM) synthetisiert und erfolgreich als lochleitende Schicht in Perowskit-Solarzellen eingesetzt. Das Molekül ist Carbazol-basiert und bindet sich durch eine Phosphonsäure-Gruppe an das Oxid der transparenten Elektrode. Dabei organisiert sich dieses Molekül selbstständig an der Elektrodenoberfläche, bis eine geschlossene Monolage entsteht. Diese ultradünne Schicht zeigt keine optischen Verluste und könnte durch die Selbstorganisation konform alle Oberflächen bedecken, also auch texturiertes Silizium in Tandemarchitekturen.

Minimaler Materialeinsatz - viele Optionen

Mit dieser Technik erreicht man einen äußerst geringen Materialverbrauch und die chemische Struktur der SAMs kann je nach Anwendungsgebiet angepasst werden. Damit könnten die SAMs auch als Modellsystem für zukünftige Untersuchungen der Grenzflächeneigenschaften oder des Perowskit-Wachstums dienen.

Neue SAMs am HZB-HySPRINT-Labor

Die Arbeiten fanden am HySPRINT-Labor des HZB statt, wo die Gruppe um Albrecht nun an einer neuen Generation von selbstorganisierenden Molekülen für Kontaktschichten forscht, mit denen die Solarzellen nunmehr Wirkungsgrade von über 21 % erreichen.

Anmeldung zum Patent

Da dieser Ansatz für Perowskit-Solarzellen noch nie vorher in Betracht gezogen wurde und potenziell für die industrielle Implementierung eine Rolle spielen kann, haben die Teams vom HZB und der KTU das Molekül und die Anwendung zur Patentanmeldung eingereicht. Da das wissenschaftliche Interesse für diese neue Kontaktmaterialklasse enorm ist, trägt die Fachzeitschrift in der aktuellen Ausgabe eine Abbildung zu der Veröffentlichung auf dem Front-Cover.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 07.12.2018

Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bis ...

Meldung vom 07.12.2018

Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert und kann nun Photokathoden mit hoher Q ...

Meldung vom 06.12.2018

Universität Göttingen erforscht in internationalem Team Helium-Schweif eines Exoplaneten

Ein internationales Forscherteam unter Beteiligung des Instituts für Astrophysik der Universität Göttingen ...

Meldung vom 06.12.2018

Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichti ...

Meldung vom 05.12.2018

Lichtblitze aus dem Plasmaspiegel

Physiker des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians- Universität München und der Um ...

Meldung vom 05.12.2018

Zweite Chance für Galileo-Satelliten

Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre v ...

Meldung vom 03.12.2018

Die Kraft des Vakuums

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am ...


30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung