Physiker der Universität Regensburg schicken Elektronen auf rasante Talfahrt

Neues aus der Forschung

Meldung vom 02.05.2018

Internationales Physiker-Team schaltet Quantenbits schneller als eine Lichtschwingung


180507-0402_medium.jpg
F. Langer, C. P. Schmid, S. Schlauderer, M. Gmitra, J. Fabian, P. Nagler, C. Schüller, T. Korn, P. G. Hawkins, J. T. Steiner, U. Huttner, S. W. Koch, M. Kira, and R. Huber
Lightwave valleytronics in a monolayer of tungsten diselenide
Nature (2018)
DOI: 10.1038/s41586-018-0013-6

 
Die Energielandschaft (blaue Fläche) einer Monolage Wolframdiselenids (Gitter) verfügt über 2 inäquivalente Täler. Elektronen werden von einem in das andere Tal beschleunigt (rötlich-gelbe Einfärbung)

Elektronen in einem Festkörper halten sich vorwiegend in Tälern ihrer Energielandschaft auf. Die Information, in welchem Tal sich ein Elektron befindet, kann als Quantenbit genutzt werden. Physiker der Universitäten Regensburg (Deutschland), Marburg (Deutschland) und Michigan (USA) haben eine Möglichkeit entdeckt, wie man Elektronen zwischen verschiedenen Tälern schneller als eine Lichtschwingung austauschen kann. Die Forschergruppe berichtet über ihre Ergebnisse in der kommenden Ausgabe der Fachzeitschrift „Nature“.

Die ungewöhnlichen Eigenschaften des Mikrokosmos können Quantencomputer nutzen, um Datenverarbeitung in Zukunft wesentlich effizienter zu machen. In der Quantenwelt können einem einzelnen Elektron gleichzeitig Eigenschaften aufgeprägt werden, die sich in der klassischen Welt ausschließen – ähnlich der fiktiven Katze von Erwin Schrödinger, die sowohl tot als auch lebendig zugleich ist. Dank dieser Eigenschaft können mit nur einem einzigen Quantenbit zahlreiche Rechenschritte auf einmal durchgeführt werden. Ein möglicher Kandidat für solche Konzepte ist zum Beispiel der quantenmechanische Spin – der Eigendrehimpuls – eines Elektrons.

Seit kurzem eröffnen neuartige Materialklassen wie die Übergangsmetalldichalkogenide (zum Beispiel Molybdändisulfid oder Wolframdiselenid) vollkommen neue Wege für die Quantenphysik. Diese Halbleiter können in der dünnsten vorstellbaren Form hergestellt werden, so dass sie nur noch aus einer einzelnen atomaren Lage bestehen. Auf diesen kleinen Skalen treten Quanteneigenschaften besonders stark hervor. In der elektronischen Struktur dieser Materialien entstehen zwei ungleichwertige Energie-Täler (englisch: „valleys“). Ob sich ein Elektron in dem einen oder dem anderen Tal aufhält, kann mit einer spin-ähnlichen Größe beschrieben werden: mit dem sogenannten Valley-Pseudospin. Außerdem können die Täler mit zirkular polarisiertem Licht gegensätzlicher Helizität adressiert und bevölkert werden. Die Versuche, den Pseudospin als Quantenbit zu verwenden, fasst man unter dem Begriff der „Valleytronik“ zusammen. Damit zukünftige Quantenrechner auch konkurrenzfähig sind, muss der Pseudospin allerdings sehr schnell schaltbar sein.

Das ist nun Forschern am Institut für Experimentelle und Angewandte Physik der Universität Regensburg gelungen. Sie haben demonstriert, wie der Valley-Pseudospin in einer einzelnen Atomlage von Wolframdiselenid in Rekordzeit umgeschaltet werden kann. An der Regensburger Hochfeld-Terahertz-Quelle werden dazu intensive Lichtimpulse im Terahertz-Spektralbereich erzeugt. Licht als elektromagnetische Welle besteht aus einem rasant schwingenden elektrischen und magnetischen Feld und kann daher verwendet werden, um eine Spannung an einem Halbleiter superschnell ein- und auszuschalten. Elektronen in einer Monolage Wolframdiselenid, die vorher optisch in ein Tal angeregt werden, werden mit den Terahertz-Impulsen beschleunigt. Noch bevor die starke Lichtwelle eine ganze Schwingung vollführt, rekollidiert sie die Ladungen miteinander, wodurch spektral breitbandiges Licht, also Licht verschiedener Farben, ausgesandt wird, sogenannte Seitenbänder.

Die Physiker stellten fest, dass nach der Anregung mit zirkular polarisiertem Licht die Seitenbänder eine stark elliptische Polarisation aufweisen. Das lässt darauf schließen, dass der Pseudospin umgeschaltet wurde und große Anteile des anderen Tals mit umgekehrter Helizität zu den Seitenbändern beitragen. Die Experimente in Regensburg werden durch quantenmechanische Berechnungen aus Marburg und Ann Arbor unterstützt, die die mikroskopische Dynamik modellieren. Die aktuellen Experimente übertragen bereits 66 Prozent der Elektronen von dem einen in das andere Tal innerhalb einer unvorstellbar kurzen Zeit von nur sieben Femtosekunden (eine Femtosekunde ist der Millionste Teil einer Milliardstel Sekunde). Mit Hilfe der Simulation sagen die Forscher eine Effizienz von 96 Prozent für leicht verbesserte Bedingungen voraus. Diese Ergebnisse stellen einen wichtigen Schritt in Richtung Valleytronik und Quanteninformationsverarbeitung bei noch nie da gewesenen, optischen Taktraten dar.


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung