Physiker beobachten erstmals einzelne Zusammenstöße von Atomen bei Diffusion

Neues aus der Forschung

Meldung vom 03.07.2017

Unter Diffusion versteht die Forschung einen Vorgang, bei dem sich kleinste Teilchen in einem Gas oder einer Flüssigkeit gleichmäßig ausbreiten. Obwohl diese Medien aus einzelnen Teilchen bestehen, wird die Diffusion als ein kontinuierlicher Prozess wahrgenommen. Effekte eines einzelnen Stoßes zwischen Teilchen, dem grundlegenden Baustein der Diffusion, wurden bislang nicht beobachtet. Erstmals konnten Physiker aus Kaiserslautern und Erlangen nun die fundamentalen Schritte bei der Diffusion einzelner Atome in einem Gas beobachten und theoretisch beschreiben. Die Studie wurde in der renommierten Fachzeitschrift Physical Review Letters veröffentlicht.


170703-1747_medium.jpg
Michael Hohmann, Farina Kindermann, Tobias Lausch, Daniel Mayer, Felix Schmidt, Eric Lutz, and Artur Widera. 2017. Individual tracer atoms in an ultracold dilute gas. Phys. Rev. Lett. 118, 263401 – Published 30 June 2017
DOI: 10.1103/PhysRevLett.118.263401
 
Das Bild zeigt eine Vakuumzelle, mit der die Physiker ihre Versuche durchführen.
Foto: AG Widera

Schon vor fast 200 Jahren beobachtete der schottische Arzt und Forscher Robert Brown die Zitterbewegung von Pollen in einer Flüssigkeit. Ähnlich wie der Blütenstaub verteilen sich auch kleinste Teilchen, etwa Moleküle oder Atome, in Gasen und Flüssigkeiten. Dabei stoßen die einzelnen Teilchen zusammen, sodass sich ein Muster aus Zickzack-Bewegungen ergibt und sich die Teilchen verschiedener Stoffe durchmischen. Diese Zitterbewegungen werden in der Wissenschaft als „Brownsche Bewegung“ bezeichnet, das Ausbreiten und Durchmischen verschiedener Stoffe als Diffusion.

„Diffusion ist in vielen Bereichen von großer Bedeutung und liegt vielen Transportvorgängen zugrunde, zum Beispiel in lebenden Zellen oder auch in Energiespeichern“, sagt Professor Dr. Artur Widera, der an der Technischen Universität (TU) Kaiserslautern zu Quantenphysik einzelner Atome und ultrakalten Quantengasen forscht. „Ein Verständnis von Diffusionsvorgängen ist daher in fast allen Bereichen von Lebenswissenschaften über Naturwissenschaft bis zu Technologieentwicklung wichtig.“

Ein einfaches Verständnis von Diffusion in der Wissenschaft gelingt, wenn man die einzelnen Zusammenstöße von Teilchen vernachlässigt. „In diesem Zusammenhang sprechen wir auch von einem kontinuierlichen Medium, in das etwa ein größeres Teilchen hineindiffundiert. Diese Vereinfachung ist umso besser, je kleiner die Masse der Teilchen im Medium und je größer die Frequenz der Zusammenstöße ist“, sagt Dr. Michael Hohmann, Erstautor der Studie und wissenschaftlicher Mitarbeiter bei Professor Widera. Ein Beispiel aus dem Alltag ist Nebel. Er kann als ein solches Medium angesehen werden, obwohl er aus winzigen einzelnen Wassertropfen besteht.

Für ihr Experiment haben die Physiker um Widera die Bedingungen, die bei einem kontinuierlichen Medium herrschen, geändert: „Wir haben für die Diffusion statt großer Teilchen, wie etwa Pollen, einzelne Atome verwendet, die fast die gleiche Masse wie Atome des Gases haben. Außerdem haben wir ein sehr kaltes, dünnes Gas verwendet, um die Frequenz der Stöße drastisch herunterzusetzen“, erläutert Hohmann. Erstmals haben die Kaiserslauterer Forscher hierbei beobachtet, wie Cäsium-Atome in einem Gas aus Rubidium-Atomen fast am absoluten Temperaturnullpunkt diffundieren. „Bei diesen Temperaturen funktioniert kein Kühlschrank mehr. Die Atome haben wir in einer Vakuumapparatur mit Laserstrahlen gekühlt und festgehalten. Die Diffusion wurde dadurch derartig verlangsamt, dass einzelne Schritte der Diffusion zu sehen waren“, erläutert Professor Widera den Versuchsaufbau.

Bei der theoretischen Beschreibung für das Experiment wurden die Kaiserslauterer Forscher von ihrem Kollegen Theorie Physik-Professor Dr. Eric Lutz von der Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) unterstützt, indem er die mathematische Modellierung mitentwickelt hat. „Mit diesem neuen Modell können wir die Bewegung der Atome nun besser beschreiben“, sagt der Erlanger Forscher.

Zusammen konnten sie nachweisen, dass es reicht, den Reibungsfaktor bei der theoretischen Berechnung des kontinuierlichen Modells zu verändern. Auf diese Weise lassen sich auch Fälle beschreiben, bei denen es sich wie im oben erwähnten Versuch nicht um ein kontinuierliches Medium handelt. Dies ist zum Beispiel in den dünnen Luftschichten der oberen Atmosphäre, im interstellaren Raum oder in der Vakuumtechnologie der Fall, wenn sich hier Aerosole, ein Gemisch aus Schwebteilchen, ausbreiten.

Die Erkenntnisse der Forscher können beispielsweise von Interesse sein, um die Ausbreitung von Aerosolen in der Atmosphäre oder von Gasen in Vakuumanlagen besser zu verstehen.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung