Neue Einblicke in die Kraft, die Atomkerne zusammenhält

Neues aus der Forschung

Meldung vom 30.06.2017

Mit Computersimulationen haben Physiker neue Einblicke in die starke Kraft erhalten, die Protonen und Neutronen im Atomkern zusammenhält. Mit einem Trick berechneten sie die Kräfte zwischen zwei Kernen. Das Team der Ruhr-Universität Bochum und der North Carolina State University beschreibt die Ergebnisse in der Zeitschrift „Physical Review Letters“. Unter den Autoren sind Prof. Dr. Evgeny Epelbaum, Dr. Hermann Krebs und Dr. Alexander Rokash vom Bochumer Institut für Theoretische Physik II.


170630-1108_medium.jpg
 
Haben einen Trick entwickelt, um die komplizierte Physik in Atomkernen berechenbar zu machen: Evgeny Epelbaum und Hermann Krebs.
Foto: © RUB, Marquard
Alexander Rokash, Evgeny Epelbaum, Hermann Krebs, Dean Lee. 2017. Effective forces between quantum bound states. Physical Review Letters
DOI: 10.1103/PhysRevLett.118.232502

Die starke Kraft ist von fundamentaler Bedeutung, jedoch bislang nicht im Detail verstanden. „Ein rätselhaftes Phänomen entsteht, wenn man zwei Alpha-Teilchen betrachtet“, sagt Epelbaum. Als Alpha-Teilchen bezeichnet man zweifach ionisierte Helium-Atome, also Zusammenschlüsse von zwei Protonen und zwei Neutronen. „Eigentlich würde man erwarten, dass kleine Veränderungen in der starken Kraft zwischen Protonen und Neutronen die Wechselwirkung zweier Alpha-Teilchen nicht maßgeblich beeinflussen“, so Epelbaum. Die Rechnungen ergaben jedoch das Gegenteil: Die Alpha-Teilchen reagierten sehr empfindlich auf Veränderungen in der starken Kraft.

Teilchen in der Simulation festhalten

Um die Physik hinter diesem Phänomen zu verstehen, repräsentierten die Forscher das Zusammenspiel der Kernteilchen mit einem vereinfachten Computermodell. Sie wollten die Kräfte zwischen zwei zusammengesetzten Kernen in Abhängigkeit von den Kräften zwischen den einzelnen Protonen und Neutronen berechnen. „Das geht aber nur, wenn wir die zusammengesetzten Teilchen in der Simulation an einem bestimmten Ort festhalten“, beschreibt Evgeny Epelbaum die Herausforderung.

Dazu dachte sich das Team einen Trick aus: Die Physiker nutzten das mathematische Pendant einer Pinzette, um zwei der vier Teilchen festzuhalten. Die Pinzette realisierten sie in Form einer schwachen äußeren Kraft, die die Teilchen an einen Ort fesselte.

Die Ergebnisse der Simulation liefern neue Antworten auf die Frage, welche Eigenschaften der starken Kraft zwischen Protonen und Neutronen zur Anziehung und Abstoßung von zusammengesetzten Teilchen führen.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung