Neuartige Quantenkontrolle über ein Drei-Zustands-Spin-System

Neues aus der Forschung

Meldung vom 08.08.2018

Wissenschaftler konnten erstmals die Quanteninterferenzen in einem quantenmechanischen Drei-Zustands-System untersuchen und damit das Verhalten einzelner Elektronenspins steuern. Sie verwendeten dafür eine neuartige Nanostruktur, bei der ein Quantensystem in einen nanoskaligen, mechanischen Schwingbalken integriert ist. «Nature Physics» hat die Studie von Wissenschaftlern der Universität Basel und des Swiss Nanoscience Institute veröffentlicht.


180813-1720_medium.jpg
 
Der schwingende Federbalken beeinflusst den Spin der Elektronen in den Stickstoffvakanzzentren (rote Pfeile). Dabei bestimmt die Phase des Oszillators, in welcher Drehrichtung der Spin rotiert.
Arne Barfuss, Johannes Kölbl, Lucas Thiel, Jean Teissier, Mark Kasperczyk, and Patrick Maletinsky
Phase-controlled coherent dynamics of a single spin under closed-contour interaction
Nature Physics (2018)
DOI: 10.1038/s41567-018-0231-8


Der Elektronenspin ist eine fundamentale quantenmechanische Eigenschaft, die jedem Elektron innewohnt. In der Quantenmechanik beschreibt der Elektronenspin die Drehrichtung des Elektrons um die eigene Achse und kann deswegen zwei Zustände annehmen, die gemeinhin als «up» und «down» bezeichnet werden. Die Quanteneigenschaften dieser Spins bieten interessante Perspektiven für zukünftige Technologien, zum Beispiel in Form von hochpräzisen Quantensensoren.

Kontrolle von drei Quantenzuständen

Die Wissenschaftler um Professor Patrick Maletinsky und den Doktoranden Arne Barfuss vom Swiss Nanoscience Institute an der Universität Basel berichten in «Nature Physics» von einer neuen Methode, mit dem sich erstmals die Quantenzustände von Elektronenspins durch ein mechanisches System auf eine neuartige Weise kontrollieren lassen.

Für ihre experimentelle Studie kombinierten sie ein solches Quantensystem mit einem mechanischen Oszillator. Konkret betteten die Forscher Elektronenspins in sogenannte Stickstoffvakanzzentren in winzige mechanischen Resonatoren aus einkristallinen Diamanten ein, die sich in Schwingung versetzen lassen.

Quantenverhalten steuern

Die Spins der Elektronen in den Stickstoffvakanzzentren zeichnen sich dabei durch eine besondere Eigenschaft aus: Ihr Gesamptspin besitzt nicht nur zwei, sondern drei Basiszustände, die man mit «up», «down» und «zero» bezeichnen kann. Durch die Kopplung des mechanischen Oszillators an den Spin erreichten sie erstmals eine vollständige Quantenkontrolle über ein solches dreistufiges System, wie sie bisher nicht möglich war.

Der Oszillator ermöglichte es den Forschern insbesondere, erstmals alle drei möglichen Übergänge zwischen den Spinzuständen gezielt anzusteuern und zu untersuchen, wie sich die Zustandsänderungen gegenseitig beeinflussen.

Dieses als «Closed Contour Driving» bezeichnete Szenario wurde bisher noch nie untersucht, eröffnet aber interessante fundamentale und praktische Perspektiven. Das Experiment erlaubte zum Beispiel ein Brechen der Zeitumkehrsymmetrie, was bedeutet, dass die Eigenschaften des Systems in zeitlich umgekehrter Richtung prinzipiell anders ausschauen als ohne Zeitumkehr. Dabei bestimmte die Phase des mechanischen Oszillators, ob der Spin im «Uhrzeigersinn» (Drehrichtung up, down, zero, up) oder gegen den Uhrzeigersinn kreiste.

Verlängerung der Kohärenz

Dieses abstrakte Konzept hat praktische Konsequenzen für die fragilen Quantenzustände. Ähnlich wie Schrödingers Katze können sich Spins nämlich für einen bestimmten Zeitraum – der sogenannten Kohärenzzeit – gleichzeitig in einer Überlagerung von zwei oder drei der genannten Basiszustände befinden.

Werden die drei Spinzustände in der hier entdeckten Weise in einem geschlossenen Kreis zueinander gekoppelt, verlängert sich die Kohärenzzeit deutlich, wie die Forscher zeigen konnten. Im Vergleich zu Systemen, bei denen nur zwei der drei möglichen Übergänge vorhanden sind, nahm sie fast um das Hundertfache zu.

Der Erhalt der Kohärenz bildet ein Schlüsselelement für zukünftige Quantentechnologien und ein weiteres Hauptergebnis dieser Arbeit.

Praktischer Nutzen für Sensorik

Die hier beschriebene Arbeit birgt hohes Potenzial für zukünftige Anwendungen. Denkbar ist, dass das hybride Resonator-Spin-System zur präzisen Erfassung zeitabhängiger Signale mit Frequenzen im Gigahertz-Bereich verwendet werden kann – zum Beispiel für Präzisionsmessungen und die Quanteninformationsverarbeitung. Diese Aufgaben sind für nanomechanische Oszillatoren bisher nicht einfach zu lösen. Hier könnte die Kopplung von Spin und einem schwingenden System gerade auch wegen dem demonstrierten Erhalt der Spinkohärenz Abhilfe schaffen.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung