Mehr Torerfolge beim Quantenfußball

Neues aus der Forschung

Meldung vom 24.10.2018

Physiker der Universität Bonn haben eine Methode vorgestellt, die sich eventuell zur Herstellung so genannter Quanten-Repeater eignet. Diese sollen die Übertragung von Quanteninformationen über weite Distanzen verbessern. Die Forscher nutzten dazu einen Effekt, mit dem sich Lichtteilchen sehr viel zielgerichteter verschießen lassen. Ihre Ergebnisse erscheinen in den Physical Review Letters.


181027-1930_medium.jpg
 
Linsen: Die vier Linsen umgeben den Resonator und dienen zur Fokussierung der Laserstrahlen, die das Atom im Resonator festhalten, sowie zur Beobachtung des Atoms.
Jose Gallego, Wolfgang Alt, Tobias Macha, Miguel Martinez-Dorantes, Deepak Pandey und Dieter Meschede
Strong Purcell effect on a neutral atom trapped in an open fiber cavity
Physical Review Letters
DOI: https://doi.org/10.1103/PhysRevLett.121.173603


Mal angenommen, Sie dürften Timo Werner die Augen verbinden und ihn mehrmals um die eigene Achse drehen. Im Anschluss würden Sie ihn bitten, im Blindflug einen Schuss zu wagen. Dass dieser ins Tor ginge, wäre wohl ausgesprochen unwahrscheinlich.

Mit einem Trick haben es Bonner Physiker dennoch geschafft, in einer ähnlichen Situation eine 90-prozentige Trefferquote zu erzielen. Allerdings war ihr Spieler knapp 10 Milliarden mal kleiner als der deutsche Stürmerstar – und dazu erheblich unberechenbarer.

Es handelte sich um ein Rubidium-Atom, das die Forscher mit Laserlicht bestrahlt hatten. Das Atom hatte dabei Strahlungsenergie absorbiert und war in einen angeregten Zustand übergegangen. Dieser hat eine definierte Lebensdauer. Danach gibt das Atom die aufgenommene Energie wieder ab, indem es ein Lichtteilchen aussendet: ein Photon.


 
Das Bild zeigt die beiden Glasfasern (Mitte oben). Ihre Enden sind verspiegelt, so dass sie einen so genannten Resonator bilden. Zwischen ihnen wird das Rubidium-Atom eingebracht.

In welche Richtung dieses Photon fliegt, ist rein zufällig. Das ändert sich jedoch, wenn man das Rubidium zwischen zwei parallel zueinander angebrachte Spiegel verfrachtet. Denn dann schießt das Atom vorzugsweise auf einen der Spiegel. Im Beispiel mit Timo Werner wäre das so, als würde das Tor den Ball magisch anziehen.

Dieses Phänomen wird Purcell-Effekt genannt. Dass es ihn gibt, wurde bereits vor einigen Jahrzehnten nachgewiesen. „Wir haben ihn nun für die zielgerichtete Emission von Photonen durch ein neutrales Atom genutzt“, erklärt Dr. Wolfgang Alt vom Institut für Angewandte Physik der Universität Bonn.

Das Interesse am Purcell-Effekt ist groß – unter anderem deshalb, weil er den Bau so genannter Quanten-Repeater möglich macht. Diese benötigt man, um Quanteninformationen über weite Strecken zu übertragen. Denn man kann zwar ein Photon in einen bestimmten Quantenzustand versetzen und durch einen Lichtleiter versenden. Das geht aber nur über gewisse Distanzen; dann muss man das Signal zwischenspeichern.

Repeater reichen Quanten-Informationen weiter

Das geschieht im Quanten-Repeater: Dort wird das Photon beispielsweise zu einem Atom geleitet, das es verschluckt und dadurch in einen anderen Zustand übergeht. Auf einen Lesepuls mit einem Laserstrahl hin spuckt das Atom das Lichtteilchen wieder aus. Die gespeicherte Quanteninformation bleibt dabei erhalten.

Das abgegebene Photon muss nun aufgefangen und wieder in einen Lichtleiter eingespeist werden. Das ist aber schwierig, wenn es in einer zufälligen Richtung abgegeben wird. „Uns ist es gelungen, die Photonen durch den Purcell-Effekt auf die Bahn zwischen den beiden Spiegeln zu zwingen“, erklärt Alt. „Wir haben nun einen der Spiegel teilweise durchlässig gemacht und dort eine Glasfaser angeschlossen. Dadurch konnten wir das Photon relativ effizient in diese Faser einleiten.“

Der Purcell-Effekt hat zudem noch einen weiteren Vorteil: Er verkürzt den Zeitraum, den das Rubidium-Atom benötigt, um die Quanteninformation zu speichern und wieder abzugeben. Dieser Geschwindigkeits-Gewinn ist ausgesprochen wichtig: Nur wenn der Repeater schnell genug arbeitet, kann er mit dem Sender der Information kommunizieren – einem so genannten Quantenpunkt. Quantenpunkte gelten heute als die wohl beste Quelle für einzelne Photonen, mit denen sich Quanteninformationen übertragen lassen – und das absolut abhörsicher. „Unsere Experimente bringen diese wichtige Zukunftstechnologie einen Schritt weiter“, meint Alt.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung