Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung

Neues aus der Forschung

Meldung vom 19.10.2018

Durch die Kombination von verschiedenen thermomagnetischen Effekten sind Sensoren für richtungsabhängige Temperatursensoren möglich. Dies hat ein Forscherteam mit Beteiligten der Universitäten Greifswald, Bielefeld, Göttingen, Groningen und dem Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V. herausgefunden. Über die Forschungsergebnisse wird in der Fachzeitschrift Nature Communications Physics 1, 65, 2018 berichtet.


181027-1911_medium.jpg
 
Die Richtung der Temperaturunterschiede wird durch eine Kombination der elektro- und magnetothermischen Eigenschaften detektiert.
U. Martens et al.
Anomalous Nernst effect and three-dimensional temperature gradients in magnetic tunnel junctions
Nature Communications Physics 1, 65, 2018
DOI: https://doi.org/10.1038/s42005-018-0063-y


Im Fokus der Untersuchungen des Forscherteams stand die Erhöhung der Energieeffizienz von Informationsspeichern auf Basis von magnetischen Tunnelelementen. Dabei wurde festgestellt, dass die Elemente durch gezielte Wahl von magnetischen Eigenschaften auf Temperaturänderungen aus gewünschten Richtungen sensibilisiert werden können.

Das Prinzip ist: Ein Temperaturunterschied am magnetischen Element erzeugt eine elektrische Spannung von oben nach unten. Diese Spannung wird von der Magnetisierung des Elementes beeinflusst. So wird die gespeicherte Information über die Magnetisierungsrichtung bestimmt. Das stärkste Signal zum Auslesen gespeicherter Informationen wird erzeugt, wenn der Temperaturunterschied auch in genau derselben Richtung verläuft. Bei einer Richtungsänderung des Temperaturunterschiedes, zum Beispiel von rechts nach links, ändert sich auch das Messsignal für jede Magnetisierung diametral. Dieser Unterschied bildet das Messsignal, welches die Richtung der Wärmequelle angibt.

Diese Sensoren haben eine Größe von wenigen Mikrometern, wobei die Dicke weniger als 10 Nanometer beträgt. Im Prinzip können sie noch weiter verkleinert werden. Die magnetischen Schichten werden durch Sputtern aufgetragen, daraus werden dann die Elemente mittels Lithographieprozessen geformt. Beides sind Standardverfahren in der Halbleiterindustrie. Dadurch können die Elemente beispielsweise leicht in Computerprozessoren integriert werden. Dort können sie helfen, die Überhitzung bestimmter Bereiche zu vermeiden. Dies wiederum würde die Laufzeitstabilität von Prozessoren verbessern.

Die Studie „Experiments on giant thermal magnetogalvanic effects in magnetic tunnel junctions“ ist im Rahmen eines Projektes des Schwerpunktprogramms „Spin Caloric Transport“ (SpinCaT, SPP 1538) der Deutschen Forschungsgemeinschaft (DFG) entstanden.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung