Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Neues aus der Forschung

Meldung vom 15.08.2018

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen


180820-1757_medium.jpg
 
Materie und Antimaterie im magnetischen Nanokosmos: Ein Gas aus Skyrmionen (lila) und Antiskyrmionen (grün), das aus den trochoidalen Bewegungen eines einzigen Antiskyrmions entstanden ist.
Ulrike Ritzmann et al.
Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin-orbit torques
Nature Electronics, 13. August 2018
DOI: https://doi.org/10.1038/s41928-018-0114-0


Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten. Physiker haben nun ein neues Verhalten entdeckt, an dem die Antiteilchen von Skyrmionen in einem ferromagnetischen Material beteiligt sind. Die Erkenntnisse basieren auf mondernsten Computersimulationen, mit denen sich die magnetischen Eigenschaften von Materialien, die nur wenige Nanometer dick sind, sehr genau nachbilden lassen. An der Forschungsarbeit waren Wissenschaftler der Universität Uppsala, der Christian-Albrechts-Universität zu Kiel, der Johannes Gutenberg-Universität Mainz (JGU) und der Universität Paris-Saclay beteiligt. Die Ergebnisse wurden jetzt in der Fachzeitschrift Nature Electronics veröffentlicht.

Die Bewegung von Elektronen in Schaltkreisen bildet die Grundlage für nützliche Anwendungen in der Elektronik. Aber gelten die Leitsätze auch für Positronen, die Antiteilchen der Elektronen? Abgesehen von dem seltenen natürlichen Vorkommen der Antiteilchen legen die Grundlagen der Elektrodynamik nahe, dass bei positiver Ladung im Prinzip alles genauso verläuft wie bei den negativ geladenen Elektronen, nur mit anderem Vorzeichen. So bewegen sich Elektronen und Positronen in elektromagnetischen Feldern in die entgegengesetzte Richtung.

Ob sich Skyrmionen als magnetische Nanoteilchen ähnlich verhalten, ist bisher nicht geklärt. Skyrmionen sind Wirbel in magnetischen Materialien, die sich über wenige Nanometer ausbreiten und die in extrem dünnen magnetischen Filmen mit der Dicke von nur wenigen Atomen zu finden sind. So wie Kugeln und Kreisringe verschiedene Topologien aufweisen, besitzen auch Skyrmionen eine bestimmte Eigenschaft, die sogenannte topologische Ladung, die eine ähnliche Rolle spielt wie elektrische Ladungen. Wenn beispielsweise eine angelegte Kraft die Skyrmionen nach links ablenkt, dann würde dieselbe Kraft Antiskyrmionen, das entsprechende Antiteilchen, nach rechts ablenken. Seit den ersten experimentellen Beobachtungen im Jahr 2009 stehen Skyrmionen im Fokus intensiver Forschungen, weil sie neue Möglichkeiten der Datenspeicherung und Informationsverarbeitung eröffnen.

Simulation zeigt fortlaufende Entstehung von Paaren aus Skyrmionen und Antiskyrmionen

Jetzt haben die Wissenschaftler gezeigt, dass in Ferromagnet-Nanoschichten, in denen sowohl Skyrmionen als auch Antiskyrmionen vorhanden sind, noch weitaus komplexere Phänomene auftreten können. Sie verwendeten modernste Simulationstechniken, um die magnetischen Eigenschaften und die Dynamiken in solchen Filmen zu berechnen, und untersuchten damit, wie Skyrmionen und Antiskyrmionen sich verhalten, wenn elektrische Ströme angelegt werden, die eine Kraft auf die Teilchen ausüben. Bei niedrigen Strömen zeigt sich das erwartete Verhalten: Entgegengesetzte topologische Ladungen werden durch die gleiche Kraft in entgegengesetzte Richtungen abgelenkt. Wird der Strom allerdings schrittweise erhöht, sind die Bewegungen nicht mehr spiegelverkehrt. Während sich Skyrmionen weiterhin geradlinig bewegen, nehmen Antiskyrmionen gekrümmte Bewegungsbahnen an, zunächst nur kurzzeitig, dann bei einer weiteren Erhöhung des elektrischen Stroms permanent. Die Bahn ähnelt dann der Bahn von Trochoiden, vergleichbar mit der Kurve des Pedals an einem Fahrrad, das auf einem geraden Weg entlangfährt. Diese auffälligen Ergebnisse zeigen, dass sich entgegengesetzte topologische Ladungen tatsächlich sehr unterschiedlich verhalten können.

Aber es gab noch weitere Überraschungen. Bei einer Erhöhung der Energie, die durch die angelegten Ströme ins System eingebracht wird, kann die trochoidale Bewegung dazu führen, dass sich periodisch Skyrmion-Antiskyrmion-Paare bilden. Wegen ihrer unterschiedlichen Bewegungsart entfernen sich die entstandenen Skyrmionen, während Antiskyrmionen mit ihrer trochoidalen Bewegung eher in dem Bereich verbleiben, in dem sie erzeugt wurden. Bemerkenswerterweise wird jedes erzeugte Antiskyrmion zu einer neuen Quelle von Skyrmion-Antiskyrmion-Paaren, was zu einer Vermehrung der Partikel führt. „Um das Ganze zu verdeutlichen: Es ist in etwa so, als ob wir ein einziges Positron durch ein starkes Magnetfeld schicken und dadurch ein Gas von Elektronen und Positronen erhalten würden“, erklärt Dr. Bertrand Dupé, Seniorautor der Studie von der Interdisciplinary Spintronics Research Group an der Johannes Gutenberg-Universität Mainz (JGU).

Ergebnisse könnten Hinweis für Materie-Antimaterie-Rätsel liefern

Die Tragweite dieser theoretischen Arbeit ist möglicherweise sehr weitreichend. Im Hinblick auf künftige Technologien legt die Studie nahe, dass Antiskyrmionen als eine stetige Quelle für Skyrmionen dienen könnten. Dies wäre für alle künftigen Anwendungen, die Skyrmionen zur Übertragung und Speicherung von Daten verwenden, von entscheidender Bedeutung. Darüber hinaus bestimmt die trochoidale Bewegung die absolute Geschwindigkeitsbegrenzung solcher topologischen Ladungen – ein wichtiger Parameter, falls in Zukunft Schaltkreise mit Hilfe von Skyrmionen entwickelt werden.

Auf einer noch grundlegenderen Ebene könnte die Arbeit Hinweise geben, um ein großes Rätsel der Kosmologie zu lösen, nämlich die Frage, warum es im Universum mehr Materie als Antimaterie gibt. Wegen der Asymmetrie in der Bewegung von Skyrmionen und Antiskyrmionen zeigen die Simulationen, dass es nach der Erzeugung von Paaren immer einen Überschuss an Skyrmionen gibt. Das Ungleichgewicht zwischen „Materie“ und „Antimaterie“ in diesen ferromagnetischen Filmen ist also eine natürliche Folge ihrer Dynamik bei hohen Energien. „Zumindest im magnetischen Nanokosmos kann Materie auf natürliche Weise aus einem einzigen Antiteilchen entstehen“, merkt Dupé an.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung