Licht ins Dunkel der Vielteilchenverschränkung

Neues aus der Forschung

31.07.2018

Licht ins Dunkel der Vielteilchenverschränkung

Die Quantenverschränkung von zwei Teilchen ist heute gut verstanden. Bei der Vielteilchenverschränkung tappt die Wissenschaft aber noch weitgehend im Dunkeln. Nun bringt ein Team um Barbara Kraus und David Sauerwein von der Universität Innsbruck Licht in dieses Forschungsfeld. Sie haben gemeinsam mit kanadischen und US-amerikanischen Forschern neue mathematische Methoden entwickelt, mit denen sie grundlegende Fragen in der Theorie der Verschränkung quantenmechanischer Teilchen beantworten.


180801-0333_medium.jpg
 
Welche Möglichkeiten es gibt, von einem verschränkten Vielteilchenzustand in einen anderen zu gelangen, haben die Physiker mit mathematischen Methoden bestimmt.
David Sauerwein, Nolan R. Wallach, Gilad Gour, and Barbara Kraus
Transformations among pure multipartite entangled states via local operations are almost never possible
Phys. Rev. X 8, 031020
DOI: 10.1103/PhysRevX.8.031020

Verschränkte Quantenzustände sind der Rohstoff der Zweiten Quantenrevolution. Optische Atomuhren, Quantensensoren, Quantencomputer und das Quanteninternet sind nur einige der derzeit in Entwicklung befindlichen Anwendungen. Ein tieferes Verständnis von Verschränkung ist daher grundlegend für viele Bereiche in Wissenschaft und Technologie. Die Verschränkung von zwei Quantenteilchen wird bereits sehr gut verstanden und kann heute im Labor effizient gemessen und manipuliert werden. Trotz enormem Forschungsaufwand sind hinsichtlich der Verschränkung von mehreren Teilchen noch viele Fragen offen. Ein Team um Barbara Kraus und David Sauerwein vom Institut für Theoretische Physik der Universität Innsbruck hat nun in einer wegweisenden Arbeit mathematische Methoden entwickelt, mit denen die Eigenschaften von fast allen vielteilchenverschränkten Zuständen untersucht werden können. Dabei haben sie eine wichtige Entdeckung gemacht: Es gibt nicht den einen oder ein kleines Set von maximal verschränkten Zuständen.


 
David Sauerwein und Barbara Kraus bringen Licht in die Theorie der Verschränkung quantenmechanischer Teilchen.

Sehr großes Set von Zuständen notwendig

Auf der Suche nach den maximal verschränkten Zuständen von vielen Teilchen kehrten die Wissenschaftlerinnen und Wissenschaftler an den Ursprung der Verschränkungstheorie zurück. Sie untersuchten wie räumlich getrennte Teilchen eines verschränkten Zustands, die sich zum Beispiel in verschiedenen Laboren befinden, über lokale Operationen transformiert werden können. Diese Operationen werden wiederum über klassische Kanäle koordiniert - in der Fachsprache „local operations assisted by classical communication“ (LOCC). Für diese LOCC-Transformationen sind Symmetrien sehr wichtig. Mit Methoden der algebraischen Geometrie kamen die Forscher zu der Erkenntnis, dass die meisten verschränkten Vielteilchenzustände keine lokalen Symmetrien aufweisen. „Dadurch konnten wir in unserer Arbeit die optimalen LOCC-Transformationen für fast alle vielteilchenverschränkten Zustände beschreiben“, erklärt David Sauerwein, der als Mitglied des Doktoratsprogramms Atome, Licht und Moleküle der Universität Innsbruck an dem Thema gearbeitet hat. Da dieses Ergebnis für eine beliebige Anzahl von Quantensystemen gültig ist und LOCC-Transformation eine zentrale Rolle in der Verschränkungstheorie spielen, zeigen die Ergebnisse neue Wege auf, um Vielteilchenverschränkung zu verstehen. „Zusätzlich konnten wir ableiten, dass die Menge der maximal verschränkten Zustände sehr groß ist und nicht nur einzelne Verschränkungszustände als Basis für mögliche Anwendungen dienen können“, erklärt Barbara Kraus. „Das ist eine sehr wichtige Erkenntnis, weil wir bisher mehr oder weniger im Trüben gefischt haben.“



Anwendung in Quantennetzwerken

Die Arbeit gibt auch Antwort darauf, wie verschränkte Zustände optimal in Quantennetzwerken benutzt werden können, die bereits experimentell umgesetzt werden. „Wir konnten zusätzlich zeigen, dass räumlich getrennte Partner in einem Quantennetzwerk die Verschränkung der meisten Zustände nur sehr eingeschränkt über LOCC verändern können. Gleichzeitig gibt es eine kleine Menge an Zuständen, die immer transformiert werden können“, erklärt David Sauermann. Die Theoretiker schlagen deshalb vor, diese kleine Menge an Zuständen näher zu untersuchen, um neue Anwendungen für Vielteilchenverschränkung zu finden. Die neuen mathematischen Methoden werden darüber hinaus auch Anwendung in anderen Bereichen der Physik finden, zum Beispiel in der Festkörperphysik, sind die Innsbrucker Wissenschaftler überzeugt.

Die aktuelle Arbeit wurde im Fachmagazin Physical Review X veröffentlicht und unter anderem vom österreichischen Wissenschaftsfonds FWF finanziell unterstützt.


Diese Newsmeldung wurde erstellt mit Materialien von idw


09.08.2018

Quantenketten in Graphen-Nanobändern

Empa-Forschenden ist gemeinsam mit Forschenden des Max Planck Instituts für Polymerforschung in Mainz und wei ...

09.08.2018

Langsam, aber effizient

Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission

09.08.2018

Wärmer als gedacht: Sekundäroptik beim Wärmemanagement von Weißlicht-LEDs

Ein optimales Wärmemanagement ist entscheidend für die Leistung und Lebensdauer von Weißlicht-LEDs. Die Tem ...

08.08.2018

Weltrekord: Schnellste 3D-Tomographien an BESSY II

Ein HZB-Team hat an der EDDI-Beamline an BESSY II einen raffinierten Präzisions-Drehtisch entwickelt und mit ...

08.08.2018

Festes Kohlendioxid im tiefen Erdinneren - Neue Modelle der Entstehung von Diamanten nötig

Ein internationales Forschungsteam aus Wien und Florenz hat durch Messungen an der Europäischen Synchrotronst ...

08.08.2018

Eis unter Hochdruck: Bayreuther Forscher beobachten erstmals den Strukturwandel von Eiskristallen

Eiswürfel im Kühlschrank oder Eiszapfen an der Dachrinne sind vertraute Alltagsbeispiele für gefrorenes Was ...

08.08.2018

Neuartige Quantenkontrolle über ein Drei-Zustands-Spin-System

Wissenschaftler konnten erstmals die Quanteninterferenzen in einem quantenmechanischen Drei-Zustands-System un ...

07.08.2018

Millionenfache Verstärkung elektromagnetischer Wellen nahe Jupiter-Mond Ganymed

"Chorwellen" heißen so, weil sie klingen wie der Vogelchor im Morgengrauen. Tatsächlich jedoch sind es elekt ...

06.08.2018

Mit Elektronenstrahlstrukturierung zu höchstauflösenden OLED-Vollfarbdisplays

OLED-Mikrodisplays etablieren sich zunehmend für den Einsatz in künftigen Wearables und Datenbrillen. Um den ...

06.08.2018

Abstürzende Monde: Was bei der Kollision der frühen Erde mit ihren Begleitern passierte

Internationales Forscherteam unter Beteiligung der Universität Tübingen simuliert ein mögliches Schicksal d ...

05.08.2018

Akustische Oberflächenwellen geben in neuronalem Netz den Ton an

Biophysiker aus Augsburg und Santa Barbara berichten in "Physical Review E" über das erstmalige Gelingen eine ...

02.08.2018

Verbundprojekt VIPE: Vierbeiniger DFKI-Laufroboter unterstützt Marserkundung im Roboterschwarm

Die Entwicklung eines heterogenen, autonomen Roboterschwarms zur Erforschung des Valles Marineris auf dem Mars ...

01.08.2018

Einblick in Verlustprozesse in Perowskit-Solarzellen ermöglicht Verbesserung der Effizienz

In Perowskit-Solarzellen gehen Ladungsträger vor allem durch Rekombination an Defekten an den Grenzflächen v ...



11.05.2018:
Vorsicht, Glatteis!





Das könnte Dich auch interessieren


Newsletter

(Neues aus der Forschung)