Laserbasiertes Röntgenbild im Eiltempo

Neues aus der Forschung

Meldung vom 17.04.2018

Garchinger Laserphysiker haben mit Hilfe einer laserbasierten Röntgentechnik erstmals eine Knochenprobe innerhalb weniger Minuten rekonstruiert. Dadurch rückt eine medizinische Anwendung der neuen Technologie näher.


180420-2238_medium.jpg
 
Die Weiterentwicklung des Hochleistungslasers ATLAS im Laboratory for Extreme Photonics der LMU ermöglichte die Erstellung einer dreidimensionalen Rekonstruktion der Feinstruktur einer Knochenprobe.
A.Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, and S. Karsch
Quick X-ray microtomography using a laser-driven betatron source
Optica Vol. 5, Issue 2, pp. 199-203
DOI: 10.1364/OPTICA.5.000199


Einen wichtigen Schritt zur medizinischen Anwendung einer neuen laserbasierten Röntgenquelle haben Forscher der Ludwig-Maximilians-Universität (LMU), des Max-Planck-Instituts für Quantenoptik (MPQ) und der TU München (TUM) zurückgelegt. Mit Hilfe der durch einen Laser erzeugten Röntgenstrahlung ist es den Physikern gelungen, eine vollständige, dreidimensionale Rekonstruktion der Feinstruktur einer Knochenprobe, eine Tomographie, innerhalb weniger Minuten durchzuführen. Bisher dauerten vergleichbare laserbasierte Messungen mehrere Stunden. Den Durchbruch ermöglichte die Weiterentwicklung des Hochleistungslasers ATLAS im neuen Laboratory for Extreme Photonics (LEX Photonics) der LMU auf dem Forschungscampus Garching. Erleichtert hat die Messungen zudem die Rekonstruktion der Probe aus den Rohdaten mittels speziell entwickelter Computerprogramme.

Röntgenuntersuchungen beim Arzt oder Sicherheitskontrollen am Flughafen benutzen seit über 100 Jahren Röntgenröhren um die durchleuchtende Strahlung zu erzeugen. In der Wissenschaft jedoch wird eine besondere Art von Röntgenstrahlung bevorzugt, die sogenannte Synchrotronstrahlung. Sie ist um ein Vielfaches heller und ermöglicht es, deutlich detailliertere Strukturanalysen durchzuführen. Synchrotron-Lichtquellen sind jedoch nicht sehr verbreitet. Sie beruhen auf der Beschleunigung von Teilchen mittels elektrischer Felder. Dazu ist der Bau von sehr großen und immens teuren Teilchenbeschleunigern notwendig.

Um Patienten trotzdem die Vorteile von Synchrotronstrahlung zu bieten, erforschen die Physiker an der LMU, am MPQ und an der TUM auf Hochleistungslasern basierende Röntgenquellen. Dabei treffen extrem intensive Laserpulse auf Wasserstoffatome. Deren elektrische Felder entreißen den Atomen die Elektronen und beschleunigen sie bis fast auf Lichtgeschwindgeit. Währenddessen sorgen die starken Plasmafelder dafür, dass die Elektronen entlang ihrer Beschleunigungsstrecke oszillieren und somit Strahlung emittieren. Das alles passiert auf wenigen Millimetern Weglänge. Dementsprechend sind laserbasierte Röntgenquellen bei vergleichbarer Qualität der Strahlung um ein Vielfaches kleiner und daher deutlich günstiger als konventionelle Synchrotrons.

In ersten Messungen am Max-Planck-Institut zeigten die Forscher 2015 bereits eine dreidimensionale Rekonstruktion eines Insekts. In den neuen Experimenten am Laboratory for Extreme Photonics verbesserten die Forscher um Prof. Stefan Karsch nun ihren experimentellen Aufbau und analysierten erstmals eine menschliche Knochenprobe. Dank fortgeschrittener Computer-Rekonstruktionsverfahren des Teams von Prof. Franz Pfeiffer von der TUM konnten die Forscher zudem mit einem deutlich kleineren Rohdatensatz arbeiten. Hierdurch konnte eine vollständige Tomographie innerhalb von drei Minuten aufgenommen werden.

Die Arbeiten entstanden im Rahmen des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP), und werden am neuen Center for Advanced Laser Applications in Garching weitergeführt. Dessen Lasersysteme sollen die Effizienz und Qualität der Röntgenquelle nochmals deutlich steigern und somit diese neue Art der Tomografie erstmals medizinisch anwendbar machen.


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung