Klassische Mechanik hilft Quantencomputer zu steuern: Mit dem Tennisschläger in die Quantenwelt

Neues aus der Forschung

Meldung vom 11.07.2017

Quantentechnik gilt als Zukunftstechnologie: kleiner, schneller und leistungsfähiger als herkömmliche Elektronik. Die Nutzung von Quanteneffekten ist jedoch schwierig, weil die kleinsten Bausteine der Materie andere Eigenschaften zeigen als die uns bekannte Welt. Einem internationalen Forscherteam ist es jetzt gelungen, die fehlertolerante Manipulation von Quanten auf einen Effekt der klassischen Mechanik zurückzuführen.


170711-1329_medium.jpg
 
Während sich der Schläger um 360 Grad um die Querachse dreht, führt der Tennisschläger-Effekt zu einer unbeabsichtigten zusätzlichen 180 Grad-Rotation um seine Längsachse.
Bild: Steffen Glaser / TUM
L. Van Damme, D. Leiner, P. Mardešić, S. J. Glaser & D. Sugny. 2017. Linking the rotation of a rigid body to the Schrödinger equation: The quantum tennis racket effect and beyond. Scientific Reports 7, Article number: 3998 (2017)
DOI: 10.1038/s41598-017-04174-x

Der Flug eines Tennisschlägers durch die Luft hilft, das Verhalten von Quanten vorherzusagen. „Durch eine Analogie aus der klassischen Physik können wir zuverlässige Steuerungen von Phänomenen der Quantenwelt effizienter entwerfen und veranschaulichen“, berichtet Steffen Glaser, Professor in der Fakultät für Chemie der Technischen Universität München TUM.

„Die Eigenschaften von Quanten zu kontrollieren und für technische Prozesse zu nutzen, ist bisher schwer, denn die Quanten folgen ihren eigenen Gesetzen, die unsere Vorstellungskraft oft übersteigen“, erklärt der Wissenschaftler. „Mögliche Anwendungen wie abhörsichere Netzwerke, hochempfindliche Messgeräte und ultraschnelle Quantencomputer stecken daher noch in den Kinderschuhen.“

Quanten unter Kontrolle

„Will man Quanteneffekte technisch nutzen, indem man das Verhalten der Teilchen durch elektromagnetische Felder beeinflusst, braucht man möglichst schnelle Methoden, um fehlertolerante Steuerungssequenzen entwerfen zu können“, so Glaser. „Bisher basieren die meisten der Methoden jedoch auf sehr aufwändigen rechnerischen Verfahren.“

Zusammen mit einem internationalen Team aus Physikern, Chemikern und Mathematikern hat der Forscher nun einen unerwarteten, vielversprechenden neuartigen Ansatz gefunden: Mit Hilfe des Tennisschläger-Effekts, eines seit langem bekannten Phänomens aus der klassischen Mechanik, kann veranschaulicht werden, wie der Drehimpuls von Quanten durch elektromagnetische Steuerbefehle zuverlässig verändert werden kann.

Tennisschläger im Flug

Der Tennisschläger-Effekt beschreibt, was passiert, wenn man einen Schläger in die Luft wirft und ihn dabei in Rotation versetzt. Wer versucht, den Schläger während des Flugs um seine Querachse rotieren zu lassen, erlebt eine kleine Überraschung: Gleichzeitig mit der beabsichtigten 360 Grad-Drehung um die Querachse vollführt der Schläger fast immer eine zusätzliche Drehung um 180 Grad um seine Längsachse. Fängt man den Schläger auf, zeigt die ehemalige Unterseite nach oben.

„Verantwortlich für diesen Effekt sind kleine Ungenauigkeiten und Störungen beim Abwurf und die unterschiedlichen Trägheitsmomente der drei Achsen eines unsymmetrischen Körpers. Statt des Tennisschlägers kann man auch ein Buch oder ein Mobiltelefon – zur Sicherheit über einer weichen Unterlage – in die Luft werfen, um den Effekt zu sehen“, erläutert Glaser. Die längste und die kürzeste Rotationsachse ist stabil. Die mittlere Achse, im Fall des Tennisschlägers die Querachse, ist jedoch unstabil und schon minimale Störungen führen sehr zuverlässig zu einer zusätzlichen 180 Grad-Drehung.

Quanten in Bewegung

Auch Quanten haben ein Drehmoment, den Spin. Dieser lässt sich durch Anlegen elektromagnetischer Felder beeinflussen. „Das Ziel der Quantentechnik ist es, die Ausrichtung des Spins gezielt zu verändern und dabei Fehler durch kleine Störungen zu minimieren“, so Glaser.

„Die gefundene mathematische Analogie zwischen den geometrischen Eigenschaften der klassischen Physik frei rotierender Objekte und der Steuerung von Quantenphänomenen kann jetzt genutzt werden, um die elektromagnetisch Steuerung von Quantenzuständen zu optimieren“, resümiert Mitautor Prof. Dominique Sugny. Als Hans Fischer-Fellow forscht der Wissenschaftler der französischen Université de Bourgogne auch am Institute for Advanced Study der TUM.

Neue, robuste Modelle

Dass der Tennisschläger-Effekt tatsächlich dabei hilft, die Robustheit von Steuerungs-Sequenzen zu verbessern, konnte das Team durch Messungen an Kernspins experimentell bestätigen. Ihre Ergebnisse veröffentlichten sie jetzt im Fachjournal „Scientific Reports“.

„Auf der Basis dieser Forschungsergebnisse können wir nun effizientere mathematische Modelle entwickeln, mit denen sich Fehler bei der Steuerung von Quantenprozessoren vermeiden lassen“, ergänzt Glaser. „Aufbauend auf den wohlverstandenen Phänomenen der klassischen Physik kann damit die Entwicklung zuverlässiger Steuerungssequenzen in der Quantentechnologie nicht nur veranschaulicht, sondern auch wesentlich beschleunigt werden.“


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung