Kieler Physikern gelingt die bisher präziseste Beschreibung hoch angeregter Elektronen

Neues aus der Forschung

Meldung vom 30.05.2018

Es ist die Drosophila der modernen Physik: das homogene Elektronengas. So wie die Fruchtfliege als Modellorganismus unter anderem dafür genutzt wird, die Prinzipien der Genetik zu beschreiben, lassen sich mit diesem Modell eines Gases wichtige Eigenschaften von Elektronen erforschen. Einem Forschungsteam vom Institut für Theoretischen Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) ist es nach mehreren Jahren Arbeit gelungen, das Verhalten von Elektronen unter extremen Bedingungen genau zu beschreiben.


180605-2004_medium.jpg
 
Die Kieler Physiker Dr. Tobias Dornheim, Dr. Simon Groth und Professor Michael Bonitz haben zwei Simulationsverfahren für das Verhalten von Elektronen entwickelt.
Tobias Dornheim, Simon Groth, and Michael Bonitz
The Uniform Electron Gas at Warm Dense Matter Conditions
Physics Reports, 744, 1-68
DOI: 10.1016/j.physrep.2018.04.001


Es ist die Drosophila der modernen Physik: das homogene Elektronengas. So wie die Fruchtfliege als Modellorganismus unter anderem dafür genutzt wird, die Prinzipien der Genetik zu beschreiben, lassen sich mit diesem Modell eines Gases wichtige Eigenschaften von Elektronen erforschen. Das auch "Jellium" genannte Modell beschreibt das Verhalten von Elektronen in Metallen, in Molekülen sowie in Clustern von Atomen. Elektronen bestimmen aber auch das Verhalten von Sternen und Planeten oder auch die Struktur des Erdkerns. Dort sind sie extremen Bedingungen ausgesetzt, wie Temperaturen von einigen Tausend bis Millionen Grad Celsius oder Drücken, die Elektronen bis zu tausendmal stärker komprimieren als in Metallen. Ähnlich extreme Bedingungen werden inzwischen auch in einigen Laboren erzeugt: Mit Hilfe von Hochintensitätslasern oder Freien-Elektronen-Lasern, wie etwa dem XFEL am Deutsches Elektronen-Synchrotron DESY in Hamburg, werden unterschiedliche Materialien untersucht, nachdem sie erhitzt, komprimiert oder stark angeregt wurden. Einem Forschungsteam vom Institut für Theoretischen Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) ist es nach mehreren Jahren Arbeit gelungen, das Verhalten von Elektronen unter extremen Bedingungen genau zu beschreiben. Ihre Ergebnisse fassten sie in einem Artikel der aktuellen Ausgabe der Zeitschrift Physics Reports zusammen.

Seit mehr als 60 Jahren versuchen Physikerinnen und Physiker weltweit, das Verhalten von Elektronen zu verstehen und vorherzusagen. Sie entwickelten eine Vielzahl unterschiedlicher Modelle für das homogene Elektronengas, die Eingang gefunden haben in komplexere Theorien, wie etwa die sogenannte Dichtefunktionaltheorie. Sie hat sich inzwischen als Grundlage der Beschreibung von Atomen, Molekülen und Festkörpern etabliert. Die Genauigkeit der ihr zugrunde liegenden Modelle war allerdings lange Zeit unklar.

In den letzten fünf Jahren hat ein Team um Prof. Michael Bonitz, in Zusammenarbeit mit Kollegen vom Imperial College London (Großbritannien) und vom Los Alamos National Laboratory (USA) hier einen Durchbruch erzielt. Sie entwickelten zwei neue Computersimulationsverfahren, deren Kombination es ermöglicht, das Verhalten der Elektronen für alle relevanten Bedingungen exakt vorherzusagen. Mit diesen sogenannten Quanten-Monte-Carlo-Simulationen aus der Stochastik lassen sich hochdimensionale komplexe Probleme mithilfe der Wahrscheinlichkeitstheorie numerisch lösen. „Unsere Ergebnisse sind die ersten exakten Daten für die thermodynamischen Eigenschaften von Elektronen unter extremen Bedingungen. Damit lassen sich jetzt auch die schon existierenden Modelle zum ersten Mal überprüfen und verbessern“, so Bonitz‘ Ausblick.

Die berechneten Daten stehen Wissenschaftlerinnen und Wissenschaftlern weltweit über das Programm „LDA_XC_GDSMFB“ zur Verfügung, das in die Programmbibliothek „libxc“ aufgenommen wurde. Die dort gesammelten Funktionen der Dichtefunktionaltheorie sind frei zugänglich.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung