Jupiter hatte Wachstumsstörungen

Neues aus der Forschung

Meldung vom 27.08.2018

Aufgrund von Meteoritendaten zeigen Forschende der Universitäten Bern und Zürich sowie der ETH Zürich, wie der Jupiter entstanden ist. Daten aus Meteoriten hatten darauf hingedeutet, dass das Wachstum des Riesenplaneten während zwei Millionen Jahre verzögert wurde. Nun liegt die Erklärung vor: Kollisionen mit kilometergrossen Blöcken erzeugten hohe Energie, was dazu führte, dass in dieser Phase kaum Anreicherung von Gas stattfinden und der Planet somit nur langsam wachsen konnte.


180904-0608_medium.jpg
 
Jupiters südliche Hemisphäre fotografiert von der NASA-Sonde Juno.
Yann Alibert, Julia Venturini, Ravit Helled, Sareh Ataiee, Remo Burn, Luc Senecal, Willy Benz, Lucio Mayer, Christoph Mordasini, Sascha P. Quanz and Maria Schönbächler
The formation of Jupiter by hybrid pebble–planetesimal accretion
Nature Astronomy, 27. August 2018
DOI: http://dx.doi.org/10.1038/s41550-018-0557-2


Der Jupiter ist mit einem Äquatordurchmesser von rund 143’000 Kilometern der grösste Planet des Sonnensystems und hat 300 Mal so viel Masse wie die Erde. Der Entstehungsmechanismus von Riesenplaneten wie Jupiter ist seit Jahrzehnten ein heiss diskutiertes Forschungsthema. Nun haben sich Astrophysikerinnen und Astrophysiker des Nationalen Forschungsschwerpunktes (NFS) PlanetS der Universitäten Bern und Zürich sowie der ETH Zürich zusammengetan, um alte Rätsel rund um die Entstehung des Jupiters und neue Messungen zu erklären. Die Forschungsergebnisse wurden in der Zeitschrift «Nature Astronomy» publiziert.

«Wir konnten zeigen, dass der Jupiter in verschiedenen Phasen gewachsen ist», erklärt Julia Venturini, Postdoktorandin an der Universität Zürich. «Besonders interessant ist, dass es nicht die gleichen Körper sind, welche die Masse und die Energie liefern», ergänzt Yann Alibert, Science Officer beim NFS PlanetS und Erstautor der Studie. Zuerst sammelte der Planeten-Embryo nämlich schnell kleine, zentimetergrosse Kieselsteine an und formte so in der ersten Million Jahren rasch einen Kern. Die folgenden zwei Millionen Jahre waren geprägt von einer langsameren Anhäufung von kilometergrossen Blöcken, den so genannten Planetesimalen. Sie trafen den wachsenden Planeten mit grosser Wucht und setzen Wärme frei. «Während der ersten Etappe brachten die Kieselsteine die Masse», erklärt Yann Alibert: «In der zweiten Phase fügten die Planetesimale auch etwas Masse hinzu, aber was noch wichtiger ist, sie brachten Energie.» Nach drei Millionen Jahren war Jupiter zu einem Körper von 50 Erdmassen herangewachsen. Dann begann die dritte Entwicklungsphase, dominiert von der Anreicherung von Gasen, die zum heutigen Gasriesen mit rund 300 Erdmassen führte.


 
Die Entstehung des Jupiters in drei Phasen.

Sonnensystem in zwei Teile geteilt

Das neue Modell für Jupiters Geburt passt zu den Meteoritendaten, die letztes Jahr auf einer Konferenz in den USA vorgestellt wurden. Zunächst waren Julia Venturini und Yann Alibert verwirrt, als sie die Ergebnisse hörten. Messungen der Zusammensetzung von Meteoriten zeigten, dass in der Urzeit das Sonnensystems – eine Scheibe aus Staub und Gas – während zwei Millionen Jahren in zwei Regionen aufgeteilt war. Daraus liess sich der Schluss ziehen, dass der Jupiter eine Art Barriere darstellte, als er von 20 auf 50 Erdmassen anwuchs. Während dieser Zeit muss der Planet die Staubscheibe gestört haben, und er muss eine Überdichte erzeugt haben, welche dazu führte, dass die Kieselsteine ausserhalb seiner Umlaufbahn gefangen waren. Daher konnte sich das Material aus den äusseren Regionen nicht mit dem Material der inneren vermischen, bis der Planet genügend Masse erreicht hatte, um Gestein umzulenken und nach innen zu streuen.

«Wie konnte es zwei Millionen Jahre dauern, bis Jupiter von 20 auf 50 Erdmassen angewachsen war?» fragte Julia Venturini. «Das schien viel zu lang», erklärt sie: «Das war also die Frage, die unsere Studie auslöste.» Eine Diskussion per E-Mail begann unter den Forschenden des NFS PlanetS der Universitäten Bern und Zürich sowie der ETH Zürich und in der darauffolgenden Woche organisierten die Expertinnen und Experten aus den Bereichen Astrophysik, Kosmochemie und Hydrodynamik ein Treffen in Bern. «Nach ein paar Stunden wussten wir, was wir für unsere Studie berechnen mussten», sagt Yann Alibert: «Das war nur im Rahmen des Nationalen Forschungsschwerpunkts möglich, der Wissenschaftler und Wissenschaftlerinnen aus verschiedenen Gebieten vernetzt.»

Erklärung für verzögertes Wachstum

Mit ihren Berechnungen zeigten die Forschenden, dass die Zeit, die der junge Planet im Massenbereich von 15 bis 50 Erdmassen verbrachte, in der Tat viel länger war als bisher angenommen. Während dieser Entstehungsphase lieferten die Kollisionen mit den kilometergrossen Blöcken genügend Energie, um die Gasatmosphäre des jungen Jupiters aufzuheizen und eine schnelle Abkühlung, Kontraktion und weitere Gasanreicherung zu verhindern. «Kieselsteine sind in den ersten Phasen wichtig, um schnell einen Kern zu bilden. Aber die Wärme, die von den Planetesimalen geliefert wird, ist entscheidend, um die Gasanreicherung so zu verzögern, dass sie zur Zeitskala passt, die durch die Meteoritendaten vorgegeben wird», fassen die Astrophysikerinnen und Astrophysiker zusammen. Sie sind überzeugt, dass ihre Ergebnisse auch entscheidend dazu beitragen werden, langwierige Probleme bei der Erklärung der Entstehung von Uranus und Neptun sowie Exoplaneten mit ähnlicher Masse zu lösen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung