Havarierte Satelliten: Eigenbewegung zuverlässig bestimmen und prognostizieren

Neues aus der Forschung

Meldung vom 03.08.2017

Unkontrollierte Objekte im Erdorbit bergen massive Risiken für funktionstüchtige Satelliten und die gesamte Raumfahrt. Seit April 2012 fliegt auch der europäische Umweltsatellit ENVISAT manövrierunfähig um die Erde. Das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR hat wegweisende Methoden entwickelt, um die Eigenrotation des havarierten Satelliten präzise zu ermitteln – und so eine zukünftige De-Orbiting-Mission effektiv zu unterstützen.


170803-2229_medium.jpg
https://www.fraunhofer.de/de/presse/presseinformationen/2017/august/havarierte-satelliten--eigenbewegung-zuverlaessig-erkennen-und-p.html
 
Das Weltraumbeobachtungsradar TIRA des Fraunhofer FHR.
Foto: © Fraunhofer FHR

Der ehemalige Umweltsatellit ENVISAT ist eines der größten Raumfahrzeuge, die jemals von der ESA in die Erdumlaufbahn gebracht wurden. Bereits 2002 wurde der 2,3 Milliarden Euro teure und rund acht Tonnen schwere Umweltsatellit gestartet und verrichtete bis 2012 zuverlässig seinen Dienst – die Überwachung des Klimas, der Ozeane und der Landflächen des Planeten Erde. Dann ging der Kontakt verloren. Der Erdbeobachtungssatellit fliegt in einer erdnahen Umlaufbahn in etwa 800 km Höhe – eine Region des Erdorbits mit einer hohen Populationsdichte an Weltraumobjekten. »Weltraummüll ist ein großes Problem in der erdnahen Raumfahrt. Der nun unkontrollierte Flug von ENVISAT bedeutet eine alltägliche Gefahr von Kollisionen mit aktiven Satelliten und Raumfahrzeugen«, betont Dr.-Ing. Delphine Cerutti-Maori, Geschäftsfeldsprecherin Weltraum am Fraunhofer FHR. »Darüber hinaus entsteht weiteres Risikopotenzial, denn Zusammenstöße können zur Entstehung neuer Trümmerteile beitragen, die wiederum mit anderen Objekten kollidieren könnten – ein gefährlicher Schneeballeffekt.«

Unterstützung für ein sicheres De-Orbiting

Um der Situation zu begegnen, sucht die ESA zurzeit nach Lösungsansätzen, um ENVISAT auf eine tiefere Umlaufbahn zu bringen und schließlich in der Erdatmosphäre kontrolliert und sicher verglühen zu lassen. Solche sogenannten »De-Orbiting-Missionen« können jedoch nur gelingen, wenn zuvor die Eigendrehbewegung des Satelliten korrekt bestimmt wird. Erst dann kann festgelegt werden, mit welcher Methode der Satellit eingefangen werden soll. Das Forscherteam des Fraunhofer FHR will zukünftige De-Orbiting-Missionen effizient unterstützen. »Unser Weltraumbeobachtungsradar TIRA kombiniert ein Ku-Band-Abbildungsradar und ein L-Band-Zielverfolgungsradar. Das bietet uns mittels ISAR-Bildgebung die einzigartige Möglichkeit, Weltraumobjekte hochaufgelöst abzubilden«, erklärt Dr.-Ing. Ludger Leushacke, Abteilungsleiter Radar zur Weltraumbeobachtung am Fraunhofer FHR. »Im Gegensatz zu optischen Systemen bietet unser Radar-System entscheidende Vorteile: Vollständige Unabhängigkeit vom örtlichen Wetter, Einsatzfähigkeit bei Tag und bei Nacht, sowie eine Auflösung, die völlig unabhängig von der Entfernung des Objekts ist. Zudem können wir sowohl die Drehgeschwindigkeit von schnell rotierenden Objekten wie ENVISAT als auch von langsam rotierenden Objekten bestimmen.« Die mit TIRA aufgenommenen Radar-Rohdaten von ENVISAT werden mit am Fraunhofer FHR entwickelten speziellen Methoden prozessiert und im Anschluss ausgewertet.

Langzeitanalyse der Eigenrotation von ENVISAT

Hochaufgelöste Radarbilder werden erzeugt, indem die relative Drehung des beobachteten Objekts zur stationären Radaranlage genutzt wird. Dabei wird das Objekt von verschiedenen Betrachtungswinkeln beleuchtet. Allerdings hängt die Querskalierung im Radarbild von der tatsächlichen Drehgeschwindigkeit ab, die aber selbst ja erst aus den Daten gewonnen werden soll. »Zur Bewältigung dieser Problematik bei der Bildgewinnung hat unser Expertenteam eine geeignete Methodik entwickelt, die Drahtgittermodelle der Objekte verwendet, um die Querskalierung richtig zu schätzen«, erläutert Cerutti-Maori. »Hierzu wird an verschiedene Bilder einer Passage manuell ein Drahtgittermodell des Objektes projiziert. Aus der zeitlichen Entwicklung der Projektionen über eine Passage lässt sich dann der Rotationsvektor des Objekts zuverlässig abschätzen.«

Für die Analyse der langzeitlichen Entwicklung der Eigenbewegung von ENVISAT wurden Beobachtungen aus dem Zeitraum von 2011, kurz vor Abbruch des Kontakts, bis 2016 herangezogen. Im regulären Dienst rotierte ENVISAT relativ langsam mit ca. 0.06°/s, was einer Umdrehung pro Erdumlauf entsprach. Kurz nach dem Abriss der Verbindung am 8. April 2012 konnte ein Anstieg der Eigendrehbewegung auf fast 3°/s festgestellt werden, etwa 45 Umdrehungen pro Umlauf. Dieser Anstieg der Eigendrehgeschwindigkeit deutet nicht einen Zusammenstoß mit anderen Objekten hin, da die Zunahme graduell erfolgte und nicht plötzlich, lautet der Rückschluss der Forscherinnen und Forscher am Fraunhofer FHR. Seit Mitte 2013 ist eine Verlangsamung der Drehgeschwindigkeit zu beobachten: Sie lag Ende 2016 bei ca. 1.6°/s. »Unsere Untersuchungen können maßgeblich dazu beitragen, in Zukunft eine kontrollierte Entfernung des havarierten ENVISAT zu unterstützen, wenn die ESA sich dazu entscheidet«, so Leushacke. »Die am Fraunhofer FHR entwickelten Methoden zur bildgestützten Aufklärung sind aktuell weltweit einzigartig und eignen sich bestens, um bei Weltraumobjekten Ausrichtung und Eigendrehbewegung zu analysieren und deren langzeitliche Entwicklung belastbar zu prognostizieren. Darüber hinaus können sie eingesetzt werden, um auch potenzielle äußere Beschädigungen der Satelliten effizient zu untersuchen«.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung