Geschützte Quantenbits

Neues aus der Forschung

Meldung vom 26.10.2018

Konstanzer Physiker um Prof. Dr. Guido Burkard entwickeln ein theoretisches Konzept zur Realisierung von Quanten-Informationsverarbeitung. Mit dem Ziel, Spins als Speicher für den Quantenrechner zu nutzen, zeigt die Arbeit der Wissenschaftler Möglichkeiten auf, wie elektrische und magnetische Störungen für kurze Zeit abgeschirmt werden können. Innerhalb der dadurch verfügbaren verlängerten „Kohärenzzeit“ könnten viele tausende Rechneroperationen ausgeführt werden. Die Studie wurde aktuell in der Zeitschrift „Physical Review Letters“ veröffentlicht.


181027-1958_medium.jpg
 
Schematische Darstellung des neuen Spin Qubits bestehend aus vier Elektronen (rot) mit ihren Spins (blau) in der umgebenden Halbleiterstruktur (grau).
Maximilian Russ, J. R. Petta, and Guido Burkard
Quadrupolar Exchange-Only Spin Qubit
Phys. Rev. Lett. 121, 177701 – Published 25 October 2018
DOI: https://doi.org/10.1103/PhysRevLett.121.177701


Der Bau des Quantencomputers ist eine technologische Vision, deren künftige Realisierung nicht nur in der Informatik und den Informationswissenschaften vorangetrieben wird. Der Fortschritt der praktischen Umsetzung hängt wesentlich auch von neuen Erkenntnissen in der theoretischen Physik ab. In jedem Computer oder Kommunikationsgerät sind Informationen in physikalische Systeme eingebettet.

„Für den Quantencomputer sind es zum Beispiel Spin-Qubits, mit denen versucht wird, Informationsverarbeitung zu realisieren“, erklärt Professor Dr. Guido Burkard, der zu diesem Thema in einer aktiven Kooperation mit der Princeton University forscht. Die theoretischen Erkenntnisse, die zur aktuellen Publikation geführt haben, wurden an der Universität Konstanz, maßgeblich auch durch den Erstautor der Studie, seinen Doktoranden Maximilian Russ, gewonnen.

Im Zentrum der physikalischen Perspektive auf den Quantencomputer stehen vor allem Spin-Qubits und deren natürliche magnetische Eigenschaften. Spins, die in der Quantentechnologie als Speicher nutzbar sind, können jedoch nur gezielt angesteuert werden, wenn sie geordnet aufgereiht werden. „Normalerweise“, beschreibt Guido Burkard weiter, „ werden Magnete – wie bei der Kompassnadel im Erdmagnetfeld – mithilfe von Magnetfeldern gesteuert. Da die Teilchen sehr klein und die Magnete sehr schwach sind, ist eine Steuerung hier sehr schwierig“.

Eine Herausforderung, der die Physiker mit elektrischen Feldern und einem entsprechenden Verfahren entgegenwirken, bei dem mehrere Elektronen, in diesem Fall vier, ein Quantenbit darstellen. Ein weiteres Problem sind die Elektronenspins, die relativ empfindlich und fragil sind. Selbst in reinen Festkörpern aus Silicium reagieren sie auf äußere Störungen mit einem Rauschen elektrischer oder magnetischer Art. Die theoretische Modellierung und Berechnung, wie Quantenbits vor diesem Rauschen geschützt werden können, stehen im Zentrum der aktuellen Studie, die somit einen Beitrag zur Grundlagenforschung für den Quantencomputer leistet: Gelingt es dieses Rauschen wenn auch nur für eine kurze Zeit abzuschirmen, sind in diesen Sekundenbruchteilen – zumindest theoretisch – tausende von Rechneroperationen möglich.

Für die Konstanzer Physiker ist der nächste Schritt, ihre theoretische Konzeption im Experiment zu testen. Dabei steigert sich die Anzahl der einsetzbaren Elektronen erstmals von drei auf vier Stück. Hierfür kann Guido Burkard mit seiner Arbeitsgruppe auf die Unterstützung der Kooperationspartner in Princeton zurückgreifen. Denn in der Kooperation sind die Rollen so verteilt, dass die theoretische Arbeit in Konstanz geleistet wird und die Kolleginnen und Kollegen in den USA experimentellen Teil übernehmen.

Nicht nur die eigene Forschungsarbeit sorgt dafür, dass der Forschungsstandort Konstanz im Bereich der Qubits international renommiert ist. Im September dieses Jahres kam die zu diesem Thema weltweit führende wissenschaftliche Community zur „4th School and Conference on Based Quantum Information Processing“ in Konstanz zusammen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung