Gödel und Turing in der Welt der Quantenphysik: Fundamentales Problem der Quante

Neues aus der Forschung

Gödel und Turing in der Welt der Quantenphysik: Fundamentales Problem der Quante

Meldung vom 13.12.2015

Ein vielen fundamentalen Fragen der Teilchen- und Quantenphysik zugrunde liegendes mathematisches Problem ist nachweislich unlösbar. Den Beweis dafür haben Wissenschaftler der Technischen Universität München (TUM), des University College London (UCL) und der Universidad Complutense in Madrid – ICMAT erbracht.


151213-2304_medium.jpg
 
Die Voraussage, ob und wann ein Material supraleitend wird, ist schwieriger als gedacht, da sich ein zugrunde liegendes mathematisches Problem als prinzipiell unlösbar erwiesen hat.
Foto: Uli Benz / TUM
Toby S. Cubitt, David Perez-Garcia, Michael M. Wolf. 2015. Undecidability of the Spectral Gap. Nature, 528, 207–211, 10 December 2015
DOI: 10.1038/nature16059

Es ist das erste wichtige Problem der Physik, für das eine so grundlegende Einschränkung gilt. Die Ergebnisse zeigen, dass sogar eine perfekte und vollständige Beschreibung der mikroskopischen Eigenschaften eines Materials nicht ausreicht, um sein makroskopisches Verhalten vorherzusagen.

Eine kleine "spektrale Lücke" – die Energie, die benötigt wird, um ein Elektron aus dem

niedrigsten Energiezustand in einen angeregten Zustand zu befördern – ist die zentrale Eigenschaft von Halbleitern. In ähnlicher Weise spielen spektrale Lücken auch bei vielen anderen Materialien eine wichtige Rolle. Schließt sich diese spektrale Lücke, das heißt, wird der Energieabstand sehr klein, können Materialien sprunghaft zu einem völlig anderen Verhalten übergehen. Ein Beispiel hierfür ist der Übergang zur Supraleitung bei tiefen Temperaturen.

Eine gängige Methode bei der Suche nach Materialien, die Strom auch bei Raumtemperatur verlustlos leiten oder andere wünschenswerte Eigenschaften besitzen, ist die mathematische Modellierung: Ausgehend von einer mikroskopischen Beschreibung des Materials wird auf die makroskopischen Eigenschaften geschlossen. Die von den Wissenschaftlern heute in Nature veröffentlichte Studie zeigt jedoch entscheidende Grenzen dieses Ansatzes. Mit ausgefeilter Mathematik bewiesen die Autoren, dass auch bei einer vollständigen mikroskopischen Beschreibung eines Quantenmaterials im Allgemeinen nicht vorhersagbar ist, ob das Material eine spektrale Lücke hat.

„Alan Turing ist berühmt für seine Rolle beim Knacken des Enigma-Codes“, sagt Co-Autor Dr. Toby Cubitt, Informatiker am UCL. „Aber unter Mathematikern und Informatikern, er ist noch bekannter für seinen Beweis, dass bestimmte mathematische Fragen ‚unentscheidbar’ sind – sie sind weder wahr noch falsch, sondern außerhalb der Reichweite der Mathematik. Wir haben gezeigt, dass die spektrale Lücke eines dieser unentscheidbaren Probleme ist. Das bedeutet, es kann keine allgemeine Methode geben um festzustellen, ob ein quanten-mechanisch beschriebenes Material eine spektrale Lücke hat, oder nicht. Dies begrenzt die Möglichkeiten, das Verhalten von Quantenmaterialien vorherzusagen entscheidend – möglicherweise sogar grundlegende Aussagen in der Teilchenphysik.“

Eine Million Dollar zu gewinnen!

Das bekannteste Problem bezüglich spektraler Lücken ist die Frage, ob das Standardmodell der Teilchenphysik eine spektrale Lücke vorhersagt. Die „Yang-Mills-Massenlücke-Vermutung“ gilt als eines der sieben sogenannten Millenium-Probleme. Teilchenphysikalische Experimente wie CERN und numerische Rechnungen auf Supercomputern legen nahe, dass es auch hier eine spektrale Lücke gibt. Demjenigen, der dies mathematisch aus den Gleichungen des Standardmodells beweist, winkt ein Preis des Clay Mathematics Institute (USA) in Höhe von einer Million Dollar.

„In bestimmten Fällen kann ein Teilproblem lösbar sein, auch wenn das allgemeine Problem unentscheidbar ist. Den begehrten Preis könnte also noch jemand gewinnen“, sagt Dr. Cubitt. „Aber unsere Ergebnisse deuten stark darauf hin, dass einige der großen offenen Probleme der theoretischen Physik nachweislich unlösbar sein könnten.“

„Seit den Arbeiten von Turing und Gödel in den 1930er Jahren war bekannt, dass es prinzipiell unentscheidbare Probleme gibt“, sagt Michael Wolf, Professor für Mathematische Physik an der Technischen Universität München. „Bisher fanden sich solche jedoch nur in sehr abstrakten Winkeln der theoretischen Informatik und der mathematischen Logik. Niemand hätte so etwas mitten im Herzen der theoretischen Physik erwartet. Doch unsere Ergebnisse ändern dieses Bild. Aus einer mehr philosophischen Perspektive heraus betrachtet sind sie auch eine Herausfor-derung für den reduktionistischen Standpunkt: denn die unüberwindliche Schwierigkeit liegt gerade in der Herleitung der makroskopischen Eigenschaften aus einer mikroskopischen Beschreibung.“

Eine schlechte und eine gute Nachricht

„Das alles ist aber nicht nur eine schlechte Nachricht“, sagt David Pérez-García Professor an der Universidad Complutense de Madrid und am Instituto de Ciencias Matemáticas (ICMAT). „Der Grund dafür, dass dieses Problem nicht zu lösen ist, liegt darin, dass Modelle auf dieser Ebene ein extrem abnormes Verhalten zeigen. Es macht es uns unmöglich sie zu analysieren. Aber diese bizarre Verhalten zeigt auch eine sehr eigenartige, neue Physik, die niemand zuvor gesehen hat. Fügt man beispielsweise zu einem Stück Materie, egal wie groß, auch nur ein einziges Teilchen hinzu, könnte dies im Prinzip seine Eigenschaften dramatisch verändern. Neue Physik wie diese hat schon oft auch neue Technologien hervorgebracht.“

Die Forscher versuchen nun, ihre in der künstlichen Welt mathematischer Modelle gewonnenen Erkenntnisse auf reale Quantenmaterialien zu übertragen, die im Labor hergestellt werden können.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung