Festes Kohlendioxid im tiefen Erdinneren - Neue Modelle der Entstehung von Diamanten nötig

Neues aus der Forschung

Meldung vom 08.08.2018

Ein internationales Forschungsteam aus Wien und Florenz hat durch Messungen an der Europäischen Synchrotronstrahlquelle ESRF in Grenoble herausgefunden, dass freies CO2 2.500 km unter der Erdoberfläche in Form eines kristallinen Festkörpers bestehen kann und nicht zwingend zu Diamant und Sauerstoff zerfällt. Diese unerwartete Stabilität stellt die gängigen geochemischen Modelle des tiefen Erdmantels in Frage. Die Ergebnisse der Studie erscheinen aktuell im renommierten Fachjournal "Nature Communications".


180813-1806_medium.jpg
 
Mikroskopaufnahme durch einen der beiden Stempeldiamanten auf das auf 27 GPa komprimierte feste CO2 (dunkler Fleck Bildmitte).
Kamil F. Dziubek, Martin Ende, Demetrio Scelta, Roberto Bini, Mohamed Mezouar, Gaston Garbarino, Ronald Miletich
Crystalline polymeric carbon dioxide stable at megabar pressures
Nature Communications
DOI: 10.1038/s41467-018-05593-8


Nur ein Bruchteil des klimarelevanten Treibhausgases CO2 ist in der Atmosphäre unserer Erde freigesetzt. Der Hauptteil von Kohlendioxid ist in fester Form in Karbonatgesteinen gebunden, gelangt durch Plattentektonik in die Tiefe unseres Planeten oder wird durch vulkanische Eruptionen aus Gesteinsschmelzen wieder freigesetzt. Mit über 99,9 Prozent Anteil am Gesamtkohlenstoff stellt die Lithosphäre bis in den tiefen Erdmantel den größten Kohlenstoffspeicher dar. Als Bestandteil langfristiger Kreisläufe sind jedoch die eigentlichen Reservoirs und der Austausch zwischen diesen mit zunehmender Tiefe nur bedingt bekannt.

Ein Forschungsteam aus Kristallographen um Ronald Miletich von der Universität Wien und Kollegen vom Europäischen Labor für Nichtlineare Spektroskopie (LENS) in Florenz lieferte nun neue Erkenntnisse zum Festkörperverhalten von Kohlendioxid bei hohem Druck und Temperatur. Die Ergebnisse der aktuellen Studie stellen einerseits eines der bisherigen Modelle der Entstehung von Diamanten und andererseits auch geochemische Modelle eines oxidierten Erdmantels in Frage. In Experimenten komprimierten die ForscherInnen CO2 in einer sogenannten Diamantstempelzelle auf einen Druck von 1,2 Millionen bar. Dies entspricht einer Tiefe von etwa 2.500 km im unteren Erdmantel. Mit Hilfe eines fokussierten Infrarot-Lasers erhitzten sie das zu einem glasartigen Festkörper verdichtete CO2 auf eine Temperatur von etwa 2.700 Kelvin, also auf jene Temperatur, die im Erdinneren in diesen Tiefen vorherrscht.


 
Einer der beiden verwendeten Diamantstempel vor dem Experiment.

Kristallisation von festem CO2

Bei einem experimentellen Aufbau an der Europäischen Synchrotronstrahlquelle ESRF in Grenoble zeigte sich, dass CO2 sich bei diesen Temperaturen nicht zwingend, wie bisher angenommen, in Diamant und Sauerstoff zersetzt. "Unser Forschungsteam vor Ort konnte es anfangs nicht recht glauben, dass in den gemessenen Röntgen-Beugungsbildern die Peaks von kristallinem CO2-V auftauchten, also von jener Hochdruckmodifikation von festem CO2, die unter derartigen Bedingungen längst zu Diamant und Sauerstoff umgewandelt hätte sein müssen", erklärt Ronald Miletich. Wenn CO2 tatsächlich instabil wäre, hätte diese beobachtete Rekristallisation einer mit dem Silikatmineral Cristobalit identischen Struktur keinesfalls erfolgen können.

Bisherige Zersetzung von CO2 nur experimentelles Artefakt

"Nun haben wir erstmals einen experimentellen Nachweis, dass freies CO2 tatsächlich in der Natur in diesen Tiefen existieren könnte. Auch konnten wir nachweisen, dass die bislang geglaubte Zersetzung nur ein experimentelles Artefakt ist, da extrem heißes CO2 mit einer der Komponenten der Diamantstempelzelle reagieren kann", so Miletich.

Der Befund dieser Studie stellt nun die gängigen Modelle der Bildung von Diamanten durch einfache Zersetzung von instabilen Kohlendioxid in Frage. Darüber hinaus wirft es die Frage auf, ob vielleicht weitere bislang nicht in Erwägung gezogene Reaktionen des CO2 zu ganz neuen CO2-haltigen Hochdruckphasen möglich sind und so diese bzw. freies CO2 als neuartige Kohlenstoff-Reservoirs im untersten Erdmantel eine zentrale Rolle einnehmen können. Auch geochemische Modelle des oxidierten Erdmantels müssen neu hinterfragt werden.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung