Elektronensysteme - Präzise Untersuchung einzelner Randkanäle

Neues aus der Forschung

Elektronensysteme - Präzise Untersuchung einzelner Randkanäle

Meldung vom 12.09.2018

Mit einer neuen Methode lässt sich erstmals ein individueller Fingerabdruck von stromleitenden Randkanälen erstellen, wie sie in neuartigen Materialien wie zum Beispiel topologischen Isolatoren vorkommen. Physiker der Universität Basel stellen das Verfahren zusammen mit amerikanischen Wissenschaftlern in «Nature Communications» vor.


180913-1749_medium.jpg
 
Gemessener Tunnelstrom in Abhängigkeit der beiden angelegten Magnetfelder: Die Fächer aus roten und gelben Kurven entsprechen jeweils einem «Fingerabdruck» der leitenden Randzustände.
T. Patlatiuk, C. P. Scheller, D. Hill, Y. Tserkovnyak, G. Barak, A. Yacoby, L. N. Pfeiffer, K.W. West, and D. M. Zumbühl
Evolution of the quantum Hall bulk spectrum into chiral edge states
Nature Communications (2018)
DOI: 10.1038/s41467-018-06025-3


Während Isolatoren keinen elektrischen Strom leiten, gibt es einige Materialien, die über besondere elektrische Eigenschaften verfügen: sie können zwar nicht in ihrem Innern, aber aufgrund von Quanteneffekten an ihrer Oberfläche und an ihren Rändern elektrische Ströme übermitteln, und dies sogar verlustfrei.

Diese sogenannten topologischen Isolatoren stehen seit einigen Jahren im Fokus der Festkörperforschung, da ihre besonderen Eigenschaften technologische Innovationen versprechen – beispielsweise für elektronische Bauelemente.

Stromfluss nur am Rand

Ähnliche Effekte wie die Randströme in den topologischen Isolatoren zeigen sich auch, wenn ein zweidimensionales Metall bei tiefen Temperaturen einem starken Magnetfeld ausgesetzt wird. Tritt der sogenannte Quanten-Hall-Effekt ein, fliesst Strom nur noch an den Grenzflächen. Dabei bilden sich mehrere stromleitende Bereiche.

Individuelle Untersuchung möglich

Bisher war es nicht möglich, diese leitenden Bereiche individuell zu untersuchen beziehungsweise die Position eines einzelnen Randzustands zu messen. Ein neues Verfahren erlaubt nun erstmals, einen exakten Fingerabdruck der leitenden Bereiche mit einer Auflösung im Nanometerbereich zu erstellen.

Dies berichten Forscher des Departements Physik und des Swiss Nanoscience Institutes der Universität Basel zusammen mit Kollegen der University of California Los Angeles sowie der Universitäten Harvard und Princeton (USA).

Zur Messungen der leitenden Bereiche haben sich die Physiker um Professor Dominik Zumbühl von der Universität Basel die Tunnelspektroskopie zunutze gemacht.

Sie verwenden einen Nanodraht aus Galliumarsenid, der sich auf dem Rand der Probe befindet und parallel zu den Randkanälen verläuft. Elektronen können nun zwischen dem Nanodraht und spezifischen Randzuständen hin und her hüpfen (tunneln), falls die Impulse in beiden Systemen übereinstimmen. Mithilfe eines zweiten Magnetfeldes kontrollieren die Wissenschaftler den Impuls der tunnelnden Elektronen, wodurch sie einzelne Randzustände individuell ansteuern können. Aus den gemessenen Tunnelströmen lassen sich die Position und der Verlauf jedes Randzustands mit einer Präzision im Nanometerbereich berechnen.

Mehr als eine Momentaufnahme

Wird bei Quanten-Hall-Systemen die Stärke des angelegten Magnetfeldes erhöht, ändert sich die Verteilung der Randzustände und ihre Anzahl sinkt. Mit der neuen Methode konnten die Wissenschaftler erstmals den gesamten Verlauf der Randzustände inklusive ihrer Entstehung bei kleinen Magnetfeldern beobachten.

Mit zunehmender Magnetfeldstärke werden die Randzustände zunächst gegen den Materialrand gedrückt und wandern schliesslich in die Mitte der Probe, wo sie vollständig verschwinden. Analytische und numerische Modelle, die das Forscherteam erstellt hat, stimmten sehr gut mit den experimentellen Daten überein.

«Wir können diese neue Technik nicht nur zur Untersuchung des Quanten-Hall-Effektes einsetzen», kommentiert Dominik Zumbühl die Ergebnisse der internationalen Zusammenarbeit. «Auch bei der Untersuchung exotischer neuer Materialien wie beispielsweise topologischen Isolatoren, Graphen oder anderer 2D-Materialien erhoffen wir bahnbrechende Erkenntnisse durch Anwendung der neuen Methode.»


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 18.11.2018 15:05

Naturkonstanten als Hauptdarsteller

Generalkonferenz für Maß und Gewicht (CGPM) verabschiedet Revision des Internationalen Einheitensystems.

Meldung vom 18.11.2018 14:57

Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. ...

Meldung vom 18.11.2018 14:44

Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physik ...

Meldung vom 18.11.2018 14:38

Kometen als Wasserträger für Exoplaneten

Erst 2016 haben WissenschafterInnen mit Proxima Centauri b den der Erde nächstgelegenen und potenziell bewohn ...

Meldung vom 18.11.2018 14:34

Eine kalte Supererde in unserer Nachbarschaft

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie (MPIA) ...

Meldung vom 18.11.2018 14:22

Die Umgebung macht das Molekül zum Schalter

Erstmals haben Physiker der Universität Würzburg ein organisches Molekül so positioniert, dass dieses zwei ...

Meldung vom 18.11.2018 14:09

Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Mat ...

Meldung vom 18.11.2018 14:02

Wenn sich unterschiedliche Systeme gleich verhalten

Unterschiedliche physikalische Systeme – in sich abgeschlossen und fern des Gleichgewichts – können sich ...

Meldung vom 18.11.2018 13:57

«Synchronisiertes» Licht

Wenn Fotoemitter miteinander kooperieren, dann strahlen sie gleichzeitig, ein Phänomen, das als Superfluoresz ...

Meldung vom 07.11.2018 22:46

Magnetfeld heizt Weißen Zwergen ein

Universität Tübingen an internationaler Studie beteiligt: Erstmals lässt sich erklären, warum mancher der ...

Meldung vom 07.11.2018 22:36

ALMA und MUSE entdecken einen galaktischen Springbrunnen

Beobachtungen mit ALMA und dem MUSE-Spektrografen am VLT der ESO haben eine gewaltige Fontäne aus molekularem ...




11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung