Ein Jet von Atomen – Erste Linse für extrem ultraviolettes Licht entwickelt

Neues aus der Forschung

Meldung vom 28.11.2018

Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben die erste refraktive Linse entwickelt, die extrem ultraviolette Strahlen fokussiert. Anstelle von Glaslinsen, die im extrem ultravioletten Bereich undurchsichtig sind, haben sie eine Linse genutzt, die aus einem Jet von Atomen besteht. Hierdurch bieten sich zukünftig neue Möglichkeiten, um beispielsweise biologische Strukturen auf kürzesten Zeitskalen abzubilden und somit besser zu verstehen. Die Ergebnisse sind jetzt in „Nature“ veröffentlicht worden.


181130-1816_medium.jpg
 
Fokussierung eines XUV-Lichtstrahls durch einen Jet aus Atomen, der als Linse dient.
Lorenz Drescher, Oleg Kornilov, Tobias Witting, Geert Reitsma, Nils Monserud, Arnaud Rouzée, Jochen Mikosch, Marc Vrakking & Bernd Schütte
Extreme-ultraviolet refractive optics
Nature, 28. November 2018 (online)
DOI: 10.1038/s41586-018-0737-3


Ein Baumstamm, der teilweise unter Wasser liegt, scheint gebogen zu sein. Schon lange weiß man, dass dies die Brechung verursacht, das heißt der Lichtstrahl wird auf seinem Weg von einem Medium (Wasser) zu einem anderen (Luft) gebrochen. Auch bei Linsen, die in unserem Leben unentbehrlich sind, ist Brechung das grundlegende physikalische Prinzip. Sie sind Teil unseres Auges, sie dienen als Brillen, Kontaktlinsen sowie als Objektive von Kameras, und sie werden zum Kontrollieren von Laserstrahlen benutzt.

Mit der Entdeckung neuer Bereiche des elektromagnetischen Spektrums wie der ultravioletten (UV) Strahlung und Röntgenstrahlung wurden refraktive Linsen entwickelt, die an diese spektralen Bereiche genau angepasst sind. Elektromagnetische Strahlung im extrem ultravioletten (XUV) Bereich ist jedoch speziell. Sie umfasst den Wellenlängenbereich zwischen der UV- und Röntgenstrahlung – aber im Gegensatz zu diesen beiden Strahlungsbereichen kann sie sich nur im Vakuum oder in stark verdünnten Gasen bewegen.


 
Unsichtbarer Regenbogen, der durch einen Jet von Helium-Atomen entsteht. Licht mit Farben nahe zu Heliumresonanzen werden entweder nach oben oder unten abgelenkt.

Heutzutage wird XUV-Strahlung bei der Lithographie für Halbleiter genutzt wie auch in der Grundlagenforschung, um die Struktur und die Dynamik von Materie zu verstehen und zu kontrollieren. Sie ermöglicht Lichtpulse im Attosekundenbereich – dies sind die kürzesten Lichtpulse, die Menschen erzeugen können (eine Attosekunde ist ein Millardstel einer Millardstel Sekunde). Aber trotz der großen Zahl an XUV-Quellen und -Anwendungen gab es bislang keine XUV-Linsen. Der Grund hierfür ist, dass die XUV-Strahlung stark von festem oder flüssigem Material absorbiert wird und sie sich somit nicht durch konventionelle Linsen bewegen kann.

Um die XUV-Strahlung zu fokussieren, hat das Wissenschaftlerteam am MBI einen neuen Ansatz gewählt: Sie ersetzten eine Glaslinse mit einem Jet von Atomen aus dem Edelgas Helium (siehe Abb. 1). Diese Linse profitiert von der hohen Durchlässigkeit des Heliums im XUV-Spektralbereich. Zur gleichen Zeit kann sie präzise kontrolliert werden, da die Dichte des Gases im Jet geändert werden kann. Dies ist wichtig, um die Brennweite einzustellen und die Größe der fokussierten XUV-Strahlung zu minimieren.

Verglichen mit gekrümmten Spiegeln, die häufig zum Fokussieren von XUV-Strahlung genutzt werden, haben diese gasförmigen refraktiven Linsen einige Vorteile: Eine neue Linse wird beständig durch den Fluss an Atomen im Jet gebildet, so dass Beschädigungen kein Problem darstellen. Weiterhin geht – anders als bei einem typischen Spiegel – durch die Gaslinse kaum XUV-Strahlung verloren. „Dies ist die wichtigste Verbesserung, weil die Erzeugung von XUV-Strahlen komplex und oft sehr teuer ist“, erklärt Dr. Bernd Schütte, Wissenschaftler am MBI und Mitautor der Publikation.

In ihrer Arbeit haben die Wissenschaftler weiterhin gezeigt, dass ein Jet von Atomen als ein Prisma dienen kann, das die XUV-Strahlung in seine Spektralkomponenten zerlegt (siehe Abb. 2). Dies ist vergleichbar mit einem Regenbogen, bei dem Wassertropfen das Sonnenlicht in seine Spektralfarben brechen – nur sind die „Farben“ der XUV-Strahlung für das menschliche Auge nicht sichtbar.

Die Entwicklung von Linsen und Prismen im gasförmigen Zustand ermöglicht den Transfer optischer Techniken, die auf Brechung beruhen, auf den XUV-Bereich. Diese Techniken haben im sichtbaren sowie Infrarot-Bereich des elektromagnetischen Spektrums ein breites Einsatzgebiet. Gaslinsen könnten beispielsweise dazu dienen, ein XUV-Mikroskop zu entwickeln oder XUV-Strahlen auf einen Punkt in Nanometergröße zu fokussieren. Dies könnte zukünftig dabei helfen, strukturelle Veränderungen von Biomolekülen auf kürzesten Zeitskalen zu beobachten.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 07.12.2018

Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bis ...

Meldung vom 07.12.2018

Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert und kann nun Photokathoden mit hoher Q ...

Meldung vom 06.12.2018

Universität Göttingen erforscht in internationalem Team Helium-Schweif eines Exoplaneten

Ein internationales Forscherteam unter Beteiligung des Instituts für Astrophysik der Universität Göttingen ...

Meldung vom 06.12.2018

Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichti ...

Meldung vom 05.12.2018

Lichtblitze aus dem Plasmaspiegel

Physiker des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians- Universität München und der Um ...

Meldung vom 05.12.2018

Zweite Chance für Galileo-Satelliten

Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre v ...

Meldung vom 03.12.2018

Die Kraft des Vakuums

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am ...


30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung