Ein Jet von Atomen – Erste Linse für extrem ultraviolettes Licht entwickelt

Neues aus der Forschung

Meldung vom 28.11.2018

Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben die erste refraktive Linse entwickelt, die extrem ultraviolette Strahlen fokussiert. Anstelle von Glaslinsen, die im extrem ultravioletten Bereich undurchsichtig sind, haben sie eine Linse genutzt, die aus einem Jet von Atomen besteht. Hierdurch bieten sich zukünftig neue Möglichkeiten, um beispielsweise biologische Strukturen auf kürzesten Zeitskalen abzubilden und somit besser zu verstehen. Die Ergebnisse sind jetzt in „Nature“ veröffentlicht worden.


181130-1816_medium.jpg
 
Fokussierung eines XUV-Lichtstrahls durch einen Jet aus Atomen, der als Linse dient.
Lorenz Drescher, Oleg Kornilov, Tobias Witting, Geert Reitsma, Nils Monserud, Arnaud Rouzée, Jochen Mikosch, Marc Vrakking & Bernd Schütte
Extreme-ultraviolet refractive optics
Nature, 28. November 2018 (online)
DOI: 10.1038/s41586-018-0737-3


Ein Baumstamm, der teilweise unter Wasser liegt, scheint gebogen zu sein. Schon lange weiß man, dass dies die Brechung verursacht, das heißt der Lichtstrahl wird auf seinem Weg von einem Medium (Wasser) zu einem anderen (Luft) gebrochen. Auch bei Linsen, die in unserem Leben unentbehrlich sind, ist Brechung das grundlegende physikalische Prinzip. Sie sind Teil unseres Auges, sie dienen als Brillen, Kontaktlinsen sowie als Objektive von Kameras, und sie werden zum Kontrollieren von Laserstrahlen benutzt.

Mit der Entdeckung neuer Bereiche des elektromagnetischen Spektrums wie der ultravioletten (UV) Strahlung und Röntgenstrahlung wurden refraktive Linsen entwickelt, die an diese spektralen Bereiche genau angepasst sind. Elektromagnetische Strahlung im extrem ultravioletten (XUV) Bereich ist jedoch speziell. Sie umfasst den Wellenlängenbereich zwischen der UV- und Röntgenstrahlung – aber im Gegensatz zu diesen beiden Strahlungsbereichen kann sie sich nur im Vakuum oder in stark verdünnten Gasen bewegen.


 
Unsichtbarer Regenbogen, der durch einen Jet von Helium-Atomen entsteht. Licht mit Farben nahe zu Heliumresonanzen werden entweder nach oben oder unten abgelenkt.

Heutzutage wird XUV-Strahlung bei der Lithographie für Halbleiter genutzt wie auch in der Grundlagenforschung, um die Struktur und die Dynamik von Materie zu verstehen und zu kontrollieren. Sie ermöglicht Lichtpulse im Attosekundenbereich – dies sind die kürzesten Lichtpulse, die Menschen erzeugen können (eine Attosekunde ist ein Millardstel einer Millardstel Sekunde). Aber trotz der großen Zahl an XUV-Quellen und -Anwendungen gab es bislang keine XUV-Linsen. Der Grund hierfür ist, dass die XUV-Strahlung stark von festem oder flüssigem Material absorbiert wird und sie sich somit nicht durch konventionelle Linsen bewegen kann.

Um die XUV-Strahlung zu fokussieren, hat das Wissenschaftlerteam am MBI einen neuen Ansatz gewählt: Sie ersetzten eine Glaslinse mit einem Jet von Atomen aus dem Edelgas Helium (siehe Abb. 1). Diese Linse profitiert von der hohen Durchlässigkeit des Heliums im XUV-Spektralbereich. Zur gleichen Zeit kann sie präzise kontrolliert werden, da die Dichte des Gases im Jet geändert werden kann. Dies ist wichtig, um die Brennweite einzustellen und die Größe der fokussierten XUV-Strahlung zu minimieren.

Verglichen mit gekrümmten Spiegeln, die häufig zum Fokussieren von XUV-Strahlung genutzt werden, haben diese gasförmigen refraktiven Linsen einige Vorteile: Eine neue Linse wird beständig durch den Fluss an Atomen im Jet gebildet, so dass Beschädigungen kein Problem darstellen. Weiterhin geht – anders als bei einem typischen Spiegel – durch die Gaslinse kaum XUV-Strahlung verloren. „Dies ist die wichtigste Verbesserung, weil die Erzeugung von XUV-Strahlen komplex und oft sehr teuer ist“, erklärt Dr. Bernd Schütte, Wissenschaftler am MBI und Mitautor der Publikation.

In ihrer Arbeit haben die Wissenschaftler weiterhin gezeigt, dass ein Jet von Atomen als ein Prisma dienen kann, das die XUV-Strahlung in seine Spektralkomponenten zerlegt (siehe Abb. 2). Dies ist vergleichbar mit einem Regenbogen, bei dem Wassertropfen das Sonnenlicht in seine Spektralfarben brechen – nur sind die „Farben“ der XUV-Strahlung für das menschliche Auge nicht sichtbar.

Die Entwicklung von Linsen und Prismen im gasförmigen Zustand ermöglicht den Transfer optischer Techniken, die auf Brechung beruhen, auf den XUV-Bereich. Diese Techniken haben im sichtbaren sowie Infrarot-Bereich des elektromagnetischen Spektrums ein breites Einsatzgebiet. Gaslinsen könnten beispielsweise dazu dienen, ein XUV-Mikroskop zu entwickeln oder XUV-Strahlen auf einen Punkt in Nanometergröße zu fokussieren. Dies könnte zukünftig dabei helfen, strukturelle Veränderungen von Biomolekülen auf kürzesten Zeitskalen zu beobachten.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung